Modelling melt-bearing systems

Dave Waters

University of Oxford, UK

Intro: Systematics of melting equilibria
Intro: Physical behaviour of melt-bearing systems
Approaches to modelling:
1. Forward modelling of melting relations
2. Migmatites: H₂O-saturated vs dehydration melting
3. Dealing with melt loss in migmatites and granulites

Systematic phase relations of melting equilibria

Vapour-present and vapour-absent (dehydration-) melting reactions [generic bundle, but drawn for muscovite]

Red curves define the H₂O-saturated solidus

PHASE EQUILIBRIUM MODELLING:

APPROACHES AND PITFALLS

T

- Intersection of subsolidus dehydration reaction (L) generates other, incongruent melting curves (solid products)
- One of these is the **vapour-absent dehydration melting** reaction (V)

Diagram for 'average pelite', H_2O -absent suprasolidus assemblages.

g ksp mu liq g ky ksp mu liq

Narrow bands mark low-variance dehydration melting reactions

NCKFMASH (+q)

pl

bi

mu

But dehydration melting also occurs up-T in other fields with micas

Melting systematics - Physical behaviour - Forward modelling - Migmatites - Melt loss

(a)

12

bi

Physical behaviour of melt-bearing systems

- 1. Stromatic migmatite; leucosomes have melt composition (probably H₂O-saturated)
- 2. Dehydration melting of biotite, first melt forming around existing garnet
- 3. Continuous neosomes with peritectic Grt and local melt accumulation
- 4. Sheet of Grt-bearing leucogranite (melt migration with entrained crystals)

Connectivity established ~7–10 vol% (Brown 2007)

Deformation assists melt migration

Physical behaviour of melt-bearing systems

1. Melt connectivity, melt proportion at thin-section scale (Sawyer, 2001)

Melting features in outcrop, metabasites

- 2. Peritectic pyroxene in neosomes
- 3. Interconnected neosomes
- 4. Deformation, boundinage, melt migration

Loss of coherence in diatexites at critical melt fraction – convective instability in larger bodies, at 30–50 vol% melt. Not often achieved if melt drains off at lower melt fraction.

Approaches to modelling: 1a. Forward modelling of melting relations

Melting of greywackes (Johnson et al. 2008)

Melt vol% contours show small fractions at $T < 800^{\circ}$ C. In this composition (but not in all), there is a marked meltproducing reaction (R3) at final breakdown of biotite Melting of mafic rocks (Palin et al. 2016)

Diagrams shown are for MORB composition Note: steadily increasing melt fraction with *T*; persistence of hornblende to high *T*

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

T

Approaches to modelling: 1b. Forward modelling of melting relations

Melting on 'clockwise' P-T paths (Groppo et al 2012)

R1 = muscovite dehydration melting

R2 = biotite dehydration melting

Paths 1 – 4 have different implications for melting behaviour (e.g. in 'Himalayan Metamorphic Core')

Also, dehydration melting is an endothermic process

07-16a

Cordierite-bearing migmatites at Nanga Parbat (NW Himalaya, Crowley et al 2009)

Clockwise path of melting and crystallisation

- Reaction of garnet to cordierite removes H₂O from melt
- This can cause certain melt compositions to freeze
- This behaviour allowed a detailed chronology of melt evolution and crystallisation on the exhumation path

а

Melting systematics - Physical behaviour - Forward modelling - Migmatites - Melt loss

Approaches to modelling: 2a. Migmatites: H₂O-saturated vs dehydration melting

Droop & Brodie (2012) compared dehydration melting and fluidpresent melting.

They also considered effects of H₂O transfer from adjacent dehydrating lithologies into melt-bearing rocks

Contrast in $a(H_2O)$ between melted and unmelted

Namagualand, S Africa. [Waters & Whales (1984)]

This is a projection, not a phase diagram – curves are

rocks at the amphibolite–granulite facies transition,

Approaches to modelling: 2b. Migmatites: H₂O-saturated vs dehydration melting

Forward modelling with Theriak

Calculate along a P-T path

(see p 11 and p 48 of the Theriak-Domino User's Guide)

These diagrams were calculated for muscovite melting at 8 kbar, using the 'muscovite-biotite schist' composition of Patiño Douce & Harris (1998)

Fractionation of H₂O is used to safely approach and to locate the just-saturated solidus *T*, for modelling dehydration melting

Fractionation of melt can be used to simulate melt loss at particular stages, or at each calculation step.

The command file ('directive' or .drv file) used for diagram (c) was:

REMOVE	LIQt	c 90	
ТР	670	8000	
ТР	770	8000	50

... i.e., fractionate 90% of the melt produced at each step

Approaches to modelling: 3a. Dealing with melt loss in migmatites and granulites

Basic approach (Waters 2019)

Modelling the rock 'as seen', on basis:

Composition represents situation at 'peak' *P-T* after loss of excess melt

At this peak, current assemblage was at its solidus

Make a *T*–*X* diagram where X = melt proportion added. Use suitable model melt composition.

Blue areas are H₂O-saturated, red areas contain melt, small red circle marks the just-saturated solidus

Reintegrate melt, new diagram

Add appropriate amount of melt to the original bulk composition, recalculate diagram.

Solidus crossed at 7.5 kbar (relict Ky), rock experienced both muscovite- and biotitedehydration melting, generated 6–7 vol% melt

(a)

Approaches to modelling: 3b. Dealing with melt loss in migmatites and granulites

Forward-modelling melt loss: Johnson et al. 2008

Isobaric section at 7 kbar, X = proportion of melt lost

Total volume of melt at ~900°C was 30 %.

Diagram shows predicted assemblage changes on isobaric cooling after partial melt loss, largely through back-reaction with melt. Below the solidus there will be very little change.

Contours: mol% biotite (long dash), orthopyroxene (short dash)

One of my own specimens, showing this process

Bibliography

- Brown M, 2007, Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences, J. Geol. Soc. London, 164, 709–730
- Crowley JL, Waters DJ, Searle MP, Bowring SA, 2009, Pleistocene melting and rapid exhumation of the Nanga Parbat massif, Pakistan: age and *P T* conditions of accessory mineral growth in migmatite and leucogranite, *Earth Planet. Sci. Lett.*, 288, 408-420
- Droop GTR, Brodie KH, 2012, Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluidabsent melting, J. metamorphic Geol., 30, 843–864
- Palin RM, White RW, Green ECR, Diener JFA, Powell R, Holland TJB, 2016, High-grade metamorphism and partial melting of basic and intermediate rocks, *J. metamorphic Geol.*, 34 (9), 871-892
- Groppo C, Rolfo F, Indares A, 2012, Partial melting in the higher Himalayan crystallines of Eastern Nepal: the effect of decompression and implications for the 'Channel flow' model. *Journal of Petrology*, 53, 1057–1058
- Johnson TE, White RW, Powell R, 2008, Partial melting of metagreywacke: a calculated mineral equilibria study, *J. metamorphic Geol.*, 26, 837–853
- Sawyer, EW, 2001, Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. *J. metamorphic Geol.*, 19, 291–309
- Thompson AB, Algor JR, 1977, Model systems for anatexis of pelitic rocks, *Contrib. Mineral. Petrol.*, 63, 247-269
- Waters DJ, 2019, Metamorphic constraints on the tectonic evolution of the High Himalaya in Nepal: the art of the possible, Geol. Soc. London, Special Publications, 483, 325–375
- Waters DJ, Whales CJ, 1984, Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa, *Contrib. Mineral. Petrol.*, 88, 269-275
- White RW, Powell R, Holland TJB, 2001, Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH), J. metamorphic Geol., 19, 139-153

