Equilibrium and kinetics
in metamorphism

Equilibrium phase diagram and affinity of andalusite
formation with respect to porphyroblast-free matrix
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Why discuss kinetics when this is a workshop
on phase equilibrium modelling?

Answer: our ultimate goal is to understand the P-T evolution of
metamorphic rocks.

Phase equilibrium modelling underpins this endeavour, but kinetics also
has an influence whose importance may be greater than widely assumed



Metamorphic facies: evidence that an equilibrium model for
metamorphism largely pertains...

Table 2-2. Correlation among Barrows zones (for pelitic rocks), metamorphic facies
(for mafic rocks) and calc-silicate mineral assemblages for Barrovian metamorphism
(after Thompson and Norton, 1968).

Pelitic Rocks Mafic Rocks Calc-silicate Rocks
Biotite zone Greenschist facies Talc, Phlogopite
Garnet zone Epidote-amphibolite Tremolite, Actinolite
Siiniite done facies Epidote, Zoisite
Staurolite-kyanite zone Amphibolite facies Diopside
. Sillimanite zone Grossularite, scapolite
©
Qo Sillimanite- Homblende-Pyroxene Forsterite
= K-Feldspar zone Granulite facies
a
Spear, 1993

Spear, 1993
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... to the peak P-T conditions of metamorphic rocks



Expanded concept: equilibrium is maintained throughout a rock’s prograde evolution
(the concept of “progressive metamorphism”)
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Implies that the only
reactions rocks see are
equilibrium reactions

Implies that rate of reaction
and compositional
equilibration is always faster
than rate at which P-T
conditions change

more contentious

in detail can’t be true
(thankfully)...
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Different scales of equilibration for different elements =
“partial chemical equilibrium”

Chemical-potential gradients
fast Mn

—

moderate

very slow Cr

Yang & Rivers, 2001 Carlson et al., 2015



Predicted rxn
according to
equilibrium:

Ms Grt Chl Qtz
=St Bt H,O

Actual rxn:

Ms Chl Qtz
= St Bt H,0

(Grt ~ inert)

Prograde unreactivity (or sluggish reactivity) of porphyroblasts

Pattison & Tinkham, 2009

Predicted rxn
according to
equilibrium :

Ms St Qtz * Chl
= And Bt H,0

Actual rxns:

Ms Chl Qtz
= St Bt H,0

Ms Chl Qtz
= And Bt H,0



Many of these exceptions can be handled using the concept of
“local equilibrium” (“reactive bulk composition”),
or with the application of chemical potential gradients

Others can’t: the focus of this presentation.
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What an equilibrium phase diagram doesn’t tell us
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The magnitude of free energy
differences amongst competing
configurations

Anything about:

- how long something took to happen (rates)
- how (by what mechanisms) a rock changes
from one mineral assemblage to another

Temperature [C]



Kinetics (in context of metamorphic petrology): rates and mechanisms of changing
one mineral assemblage into another (ie, how a rock recrystallizes)

Chlorite phyllite

Dissolution of reactant minerals
Nucleation of product minerals
Transport of material from
reactants to products
Growth of product minerals

Yardley, 1989



reactants

products

L7

Chlorite phyllite Garnet schist

General kinetic rate equation (according to transition state theory):

Rate =a* [1 — exp(‘l RT)]* exp‘l RT)

Free energy driving force Activation energy barrier

for reaction of rate-limiting process
(nucleation, transport,
dissolution, growth)



Rates of different steps in recrystallization process
Rate =a * [1—exp(-A,Gpr / RT) | * exp(-G,; / RT)

Dissolution, growth, transport:
approximately “linear” rate laws as function of T overstep (if overstep is not too large, ie A Gy << RT))

i.e., Rate c AT - assumes small change in Arrhenius (activation energy) term over range of T-overstep

Absolute values vary amongst the different processes Nucleation rate
~ 12 /
(7}
Nucleation: S o
a 8
e
Activation energy for nucleation is function of T overstep — squared! & 4
Q.
: L 0
i.e., Rate oc AT * exp (AT?) - turbo-charged exponential rate law g
2™
Result: interval of no nucleation (= overstepping), followed by rapid -8 1 ‘
nucleation, giving rise to notion of critical overstep 0 20 40
Waters. 2003 Overstep (delta T)
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(Uncomfortable?) fact:

Every reaction has to be overstepped to proceed

Main questions as petrologists:
How much? Is it petrologically significant?

Does it affect how we interpret P-T conditions
of metamorphism, or P-T paths?
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How much overstepping is needed?

|s every reaction overstepped by
the same amount?

Related to:

activation energy barrier of rate-limiting
process (especially nucleation)

macroscopic (free energy) driving force
for reaction: “reaction affinity”

Temperature [C]




equilibrium  over-stepped
P / /
& !
msGrt / Macroscopic driving force for reaction
C:hIBtQt;// :
e Reaction affinity, A
@ T L. . .
Defined in context of overstepping as Gibbs
G (J) free energy difference between stable (but

not yet crystallized) products, and metastable
reactants

Built-up energy needed to overcome kinetic
barriers to nucleation and growth

@ equilibrium

over—étepped

For isobaric heating:

A (J)

energetic threshold -
/ for reaction to occur

A =-0 Gy =AT (T overstep) * A,Sp;

............... el

Pattison et al., 2011 equilibrium
(A=0)

return to equilibrium
following reaction



Rate of build-up of reaction affinity with AT (= temperature overstep) = AT * A S,;
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Sensitivity of assemblage field boundaries

51 \ .'f Grt Bt

Sensitivity of boundaries should be related to bulk free energy differences A

between adjacent assemblages.

P (kb

Calculating metastable states is easy in THERMOCALC. System free energy relative to the
higher-variance assemblage is shown here, at 4 kbar, for three isograd reactions,
plotted at the same scale (other phases, Mrg, Sil, ignored)

Garnet-in reaction, a continuous reaction, small amount of product, is an order of

magnitude more sensitive in energy terms
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Andalusite formation from chlorite Andalusite formation from staurolite
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Some questions
Is there petrological evidence for kinetically-controlled overstepping?
How important is it?
What are some of the petrological consequences?

Does it occur in regional and contact metamorphism?



J. metamorphic Geol., 2002, 20, 135-149

Assessing the extent of disequilibrium and overstepping of
prograde metamorphic reactions in metapelites from the
Bushveld Complex aureole, South Africa

D.J. WATERS AND D. P. LOVEGROVE
Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK (dave.waters@earth.ox.ac.uk)
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Waters & Lovegrove, 2002
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B. Predicted mineral growth/consumption sequence (equilibrium)
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+ And and Crd (with Bt)
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Nelson aureole,
SE BC
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Some questions

Is there petrological evidence for kinetically-controlled overstepping?
Yes: Bushveld and Nelson (and others not described here)

How important is it?
Small to 80 °C overstepping, varying as function of AS of rxn

What are some of the petrological consequences?

1. Onset of reaction can be delayed by petrologically significant degrees

Implication: estimation of P-T conditions of metamorphic mineral assemblages

2. Reactions other than those in equilibrium phase diagrams are possible

Implication: interpretation of P-T paths from textures, mineral inclusions

3. Discrete intervals of reaction (and fluid release) may be episodic rather than
continuous, and may not bear obvious relationships to equilibrium phase boundaries

Implication: interpretation of fluid release and movement in metamorphism



4. Much (most?) reaction may occur

at facies boundaries (marked by high-AS
dehydration reactions involving consumption of

hydrous phases like Chl, Ms, Bt), with less -
or overstepped - reaction within facies
(lower-AS rxns)

- Greenschist-
amphibolite facies
_ boundary marked by
Chl-consuming
reactions

(= high AS reactions)

P kbar

0 200 / 4%)0 6(110 \ 860 { 1000
o
30-80 °C up to 60°C

Compilation of estimates of overstepping: 0-30 °C



Does overstepping occur in regional as well as contact metamorphism?



Differences between contact and regional metamorphism:

1. Generally slower heating rates may favour closer approach to continuous equilibrium during prograde
metamorphism. BUT.... for nucleation, heating rate is not as critical a factor as degree of T-overstep (e.g.:
aureole of huge Bushveld complex, whose timescale of metamorphism approaches regional timescales)

2. Enhanced deformation in regional metamorphism (defects, strain energy, damaged crystal surfaces,
migrating grain boundaries) may lower kinetic barriers to nucleation and growth, leading to smaller
degrees of overstepping -

Pattison, unpublished images



Regional example: staurolite-AlLSiO. relations

first appearance of Al,SiOc (Ky, Sil, And) in most metapelites predicted by equilibrium to be due to St-breakdown
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Commonly no
evidence for
growth of And,
or especially
Ky, from St

Independent
growth from
matrix minerals
(Ms, Chl)?

Pattison & Spear, 2018; Pattison & Tinkham, 2009



Maximum gap between stable Chl->St and metastable Chl-Als curves = 10 °C
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Ms + St + Qtz =

Als + Grt + Bt + H,0



Staurolite has kyanite unit cells in its structure:

Kinetically easier to just form kyanite?

«—bg= 16,58

Wenk, 1980

Fig. 1. z-axis projection of the structure of staurolite; shown in
the lower right corner is an epitaxial intergrowth with kyanite.
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Some questions

Is there evidence for kinetically-controlled overstepping?
Yes.

How important is it?
Small to ~80 °C, depending on locality, grade and type of reaction

What are some of the petrological consequences?

1. Onset of reaction can be delayed by petrologically significant degrees

2. Reactions other than those in equilibrium phase diagrams are possible
3. Discrete intervals of reaction (and fluid release) may be episodic,

and may not bear obvious relationships to equilibrium phase boundaries
4. Much (most?) reaction may occur at facies boundaries (marked by high-
AS rxns), with less - or overstepped - reaction within facies (lower-AS rxns)

Does kinetically-controlled overstepping occur in regional metamorphism?
Yes — but needs to be considered more



How much is the initial garnet-forming reaction overstepped?
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What do all these approaches have in common?

Comparison with the equilibrium position of the garnet-in line
for the rock composition of interest

Predicted garnet-in line and garnet stability using different datasets/a-X models

Same rock composition and chemical system (MnNCKFMASHTO)
Himalayan Grt-zone pelite
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Conclusions

Phase equilibrium modelling remains the foundational approach for P-T
estimation and P-T path determination of metamorphic rocks

Metamorphic recrystallization is an interplay between equilibrium and
kinetics, so accepting that kinetics has a role to play offers the potential
for better interpretations (and possibly for avoiding misinterpretations)
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