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Why discuss kinetics when this is a workshop 
on phase equilibrium modelling?

Answer: our ultimate goal is to understand the P-T evolution of 
metamorphic rocks. 

Phase equilibrium modelling underpins this endeavour, but kinetics also 
has an influence whose importance may be greater than widely assumed



Metamorphic facies: evidence that an equilibrium model for 
metamorphism largely pertains…

Spear, 1993

… to the peak P-T conditions of metamorphic rocks



Expanded concept: equilibrium is maintained throughout a rock’s prograde evolution
(the concept of “progressive metamorphism”)

more contentious

in detail can’t be true
(thankfully)…

Pattison & Tinkham, 2009

Implies that rate of reaction 
and compositional 
equilibration is always faster 
than rate at which P-T 
conditions change

Implies that the only 
reactions rocks see are 
equilibrium reactions

Average pelite

HP98 ds 5.5
2005 a-X
models



Stranded reaction 
textures

6 mm wide

10 mm wide

PPL XPL

PPL XPL

Coronitic metagabbro
(Opx-Hbl/Spl-Grt shells
between original 
igneous Ol and Pl)

Decompression texture of
Crd replacing St in
Crd-Anth rock

Pattison, unpublished images



Zoned 
garnet

Lanari & Hermann (2021), JMG Lanari & Duesterhoeft (2019)Lanari (unpublished); Tmax is uncertain

Zoned 
plagioclase

Zoned minerals

Moynihan & Pattison, 2013



Different scales of equilibration for different elements =
“partial chemical equilibrium”

Yang & Rivers, 2001 Carlson et al., 2015



St

St

Grt

FOV 3 mm wide

FOV 6 mm wide

Prograde unreactivity (or sluggish reactivity) of porphyroblasts

St

St

Grt

St

Predicted rxn
according to 
equilibrium:

Ms Grt Chl Qtz 
= St Bt H2O

Predicted rxn
according to 
equilibrium :

Ms St Qtz ± Chl
= And Bt H2O

Actual rxn:

Ms Chl Qtz 
= St Bt H2O

(Grt ~ inert)

Actual rxns:

Ms Chl Qtz 
= St Bt H2O

Ms Chl Qtz 
= And Bt H2O

Pattison & Tinkham, 2009



Many of these exceptions can be handled using the concept of 
“local equilibrium” (“reactive bulk composition”), 

or with the application of chemical potential gradients 

Others can’t: the focus of this presentation.



Pattison & Tinkham, 2009

Anything about:
- how long something took to happen (rates)
- how (by what mechanisms) a rock changes  
from one mineral assemblage to another

What an equilibrium phase diagram doesn’t tell us

The magnitude of free energy 
differences amongst competing 
configurations



- Dissolution of reactant minerals
- Nucleation of product minerals
- Transport of material from 

reactants to products
- Growth of product minerals

Kinetics (in context of metamorphic petrology): rates and mechanisms of changing 
one mineral assemblage into another (ie, how a rock recrystallizes)

1.5 mm wide Chlorite phyllite 3 mm wide Garnet schist

Yardley, 1989



General kinetic rate equation (according to transition state theory):

Rate = a * [1 – exp(-∆rGP,T / RT) ] * exp(-Gact / RT)

Activation energy barrier
of rate-limiting process
(nucleation, transport, 
dissolution, growth)

products∆rGP,T

Gact
reactants

Free energy driving force
for reaction

Chlorite phyllite Garnet schist



Dissolution, growth, transport:

approximately “linear” rate laws as function of T overstep (if overstep is not too large, ie ∆rGP,T << RT )

i.e., Rate ∝ ∆T - assumes small change in Arrhenius (activation energy) term over range of T-overstep

Absolute values vary amongst the different processes Nucleation rate
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Waters, 2003

Nucleation:

Activation energy for nucleation is function of T overstep – squared!

i.e., Rate ∝ ∆T

Rates of different steps in recrystallization process 

Result: interval of no nucleation (= overstepping), followed by rapid 
nucleation, giving rise to notion of critical overstep

* exp (∆T2) - turbo-charged exponential rate law

Rate = a * [1 – exp(-∆rGP,T / RT) ] * exp(-Gact / RT)



products∆rGP,T

Gact
reactants

(Uncomfortable?) fact:

Every reaction has to be overstepped to proceed

Pattison & Tinkham, 2009

Main questions as petrologists:

How much? Is it petrologically significant?

Does it affect how we interpret P-T conditions 
of metamorphism, or P-T paths?

Equilibrium Kinetics



Pattison & Tinkham, 2009

How much overstepping is needed?

Is every reaction overstepped by 
the same amount?

Related to:

activation energy barrier of rate-limiting 
process (especially nucleation)

macroscopic (free energy) driving force
for reaction: “reaction affinity”



Macroscopic driving force for reaction

Reaction affinity, A

Defined in context of overstepping as Gibbs 
free energy difference between stable (but 
not yet crystallized) products, and metastable 
reactants

Built-up energy needed to overcome kinetic 
barriers to nucleation and growth 

For isobaric heating:

A = - ∆rGP,T = ∆T (T overstep) * ∆rSP,T

Pattison et al., 2011



Small (10 °C) overstep 
for large ∆S rxn

Large (60 °C) overstep 
for smaller ∆S rxn

Energy barrier to
nucleation and growth

High H2O release

Low H2O release

Anhydrous

Moderate H2O
release

Rate of build-up of reaction affinity with ∆T (= temperature overstep) = ∆T * ∆rSP,T

Pattison et al., 2011



Waters, 2021 

v

Ms Chl Qtz = Grt Bt H2O Ms (Grt) Chl Qtz = St Bt H2O



Pattison & Tinkham, 2009

How much variation is there 
amongst reactions in this 
phase diagram? 



And
Sil

Chl→Grt
St→Als

Crd→And

Chl→Crd

Chl→And

Chl→St

Reaction affinity maps

Pattison et al., 2011



Andalusite formation from chlorite

T (C)500 550 600 650 500 550 600 650

Andalusite formation from staurolite

T (C)

Chlorite-free andalusite-cordierite reaction

T (C)500 550 600 650 Pattison et al., 2011



Some questions

Is there petrological evidence for kinetically-controlled overstepping?

How important  is it? 

What are some of the petrological consequences?

Does it occur in regional and contact metamorphism?





Waters & Lovegrove, 2002



Waters & Lovegrove, 20021 mm wide

St

And

Bt

Cld overgrown 
(pseudomorphed)
by St and And

Qtz pseudomorph of Cld
that impeded St growth

Bt overgrown 
(partially 
pseudomorphed)
by St

Bt inclusion 
in And

Qtz pseudomorph 
of Cld
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Build-up of reaction 
affinity with 
overstepping

+And,
-Ctd

Equilibrium –
no overstepping

Observed –
overstepping

+ And and Crd (with Bt)

Waters & Lovegrove, 2002



Nelson batholith and aureole, 
SE British Columbia 

middle Jurassic

2.5 - 4 kbar (tilted after emplacement)

abundant graphitic metapelitic host 
rocks of uniform composition

Pattison & Vogl, 2005



Nelson aureole, 
SE BC

Pattison & 
Tinkham, 
2009

Equilibrium

Observed

Grt/St/And-in

Grt/St/And-in

St to Al2SiO5

St to Al2SiO5



Pattison (unpublished) based on Pattison & Tinkham (2009)

Violation of the metamorphic 
facies principle?

Strictly speaking, yes
(in zones where stable mineral 
assemblages do not form).

In practice, maybe not so much
(at Nelson, spacing of isograds has 
been affected, but order of 
metamorphic index minerals is the 
same as in other Grt-St-And 
sequences)

Zones of overstepped reaction



Some questions

Is there petrological evidence for kinetically-controlled overstepping?
Yes: Bushveld and Nelson (and others not described here) 

How important  is it? 
Small to 80 °C overstepping, varying as function of ΔS of rxn

What are some of the petrological consequences?

2. Reactions other than those in equilibrium phase diagrams are possible

Implication: interpretation of P-T paths from textures, mineral inclusions

Implication: interpretation of fluid release and movement in metamorphism

3. Discrete intervals of reaction (and fluid release) may be episodic rather than 
continuous, and may not bear obvious relationships to equilibrium phase boundaries

1. Onset of reaction can be delayed by petrologically significant degrees 
Implication: estimation of P-T conditions of metamorphic mineral assemblages



4. Much (most?) reaction may occur 
at facies boundaries (marked by high-ΔS 
dehydration reactions involving consumption of 
hydrous phases like Chl, Ms, Bt), with less -
or overstepped - reaction within facies 
(lower-ΔS rxns)

30-80 °C up to 60°C0-30 °C

Greenschist-
amphibolite facies 
boundary marked by
Chl-consuming 
reactions
(= high ΔS reactions)

Compilation of estimates of overstepping:



Does overstepping occur in regional as well as contact metamorphism?



Differences between contact and regional metamorphism:

Pattison, unpublished images

2. Enhanced deformation in regional metamorphism (defects, strain energy, damaged crystal surfaces, 
migrating grain boundaries) may lower kinetic barriers to nucleation and growth, leading to smaller 
degrees of overstepping

1. Generally slower heating rates may favour closer approach to continuous equilibrium during prograde 
metamorphism. BUT…. for nucleation, heating rate is not as critical a factor as degree of T-overstep (e.g.: 
aureole of huge Bushveld complex, whose timescale of metamorphism approaches regional timescales)



Regional example: staurolite-Al2SiO5 relations
first appearance of Al2SiO5 (Ky, Sil, And) in most metapelites predicted by equilibrium to be due to St-breakdown

Pattison & Spear, 2018

Average pelite

HP98 ds 5.5
2005 a-X
models

Ms + St + Qtz =

Als + Grt + Bt + H2O

Two problems (at least!)…..



Lots of StAnd
(upper-P Buchan) 
prograde 
sequences

Lots of StKy
(Barrovian)
prograde 
sequences

Very few StSil-only
prograde
sequences 

Pattison & Spear, 2018



a

2.5 mm

And

St

St
Grt

Pattison & Spear, 2018; Pattison & Tinkham, 2009 

Commonly no 
evidence for 
growth of And, 
or especially 
Ky, from St

Independent 
growth from 
matrix minerals 
(Ms, Chl)?



Maximum gap between stable Chl→St and metastable Chl→Als curves = 10 °C

Pattison & Spear, 2018

MsChl=StBt rxn

Ms + St + Qtz =

Als + Grt + Bt + H2O



1.5 mm across

St

Ky

Sil

Wenk, 1980

Glen Clova, Scotland    Pesch, 2014

Glacier Creek aureole, BC (Pattison & Spear, 2018)

Staurolite has kyanite unit cells in its structure:

Kinetically easier to just form kyanite?

Kyanite:
Al2SiO5



Mica Creek, BC
Ghent & Simony, 2005

From Press & Siever, 2002, based 
on Thompson & Norton, 1968

Penfold Creek, BC
Fletcher & Greenwood, 1979

Coincidence of St-in and Ky/And-in 
isograds is relatively common
(though not ubiquitous)



Pattison & Spear, 2018



Some questions

Is there evidence for kinetically-controlled overstepping?
Yes.

How important  is it? 
Small to ~80 °C, depending on locality, grade and type of reaction

What are some of the petrological consequences?
1. Onset of reaction can be delayed by petrologically significant degrees 
2. Reactions other than those in equilibrium phase diagrams are possible
3. Discrete intervals of reaction (and fluid release) may be episodic, 
and may not bear obvious relationships to equilibrium phase boundaries
4. Much (most?) reaction may occur at facies boundaries (marked by high-
ΔS rxns), with less - or overstepped - reaction within facies (lower-ΔS rxns)

Does kinetically-controlled overstepping occur in regional metamorphism?
Yes – but needs to be considered more



Zeh and Holness
(2003)   
Regional Buchan

Wilbur & Ague 
(2006)  
Barrovian

Pattison & 
Tinkham (2009)   
Aureole

Kelly et al. 
(2013)
Various regional

Caddick, in Carlson 
et al. (2015) 
Blueschist

George & 
Gaidies (2017)
Barrovian

Spear et al. (2014), 
Castro & Spear (2016),  
Wolfe & Spear (2018)
Barrovian/Blueschist

80°C Unspecified 30°C 5 - 67°C 80 °C, 4-6 kbar Negligible 20-80°C
2-8 kbar

Phase equilibrium 
modelling of 

unusual bulk comps

Growth modelling
of “branched” 

garnet

Isograd sequence 
and phase equil. 

modelling

Crystal size 
distributions (CSDs) 

and numerical  
modelling 

Grt isopleth 
intersections and 

phase equil. 
modelling

CSDs, chemical 
zoning and 
numerical  
modelling 

QuiG/TE-based 
thermobarometry
and phase equil. 

modelling

How much is the initial garnet-forming reaction overstepped?



What do all these approaches have in common? 

Comparison with the equilibrium position of the garnet-in line 
for the rock composition of interest 

Same rock composition and chemical system (MnNCKFMASHTO)
Himalayan Grt-zone pelite

Waters (2019)

HP 1998 ds5.5
White et al. 2005

a-X models

HP 1998 ds5.5
White et al. 2007

a-X models
SPaC ds2014

Ideal a-X models

HP 2011 ds6.2
White et al. 2014a,b  

a-X models

Predicted garnet-in line and garnet stability using different datasets/a-X models



Phase equilibrium modelling remains the foundational approach for P-T 
estimation and P-T path determination of metamorphic rocks

Conclusions

Metamorphic recrystallization is an interplay between equilibrium and 
kinetics, so accepting that kinetics has a role to play offers the potential 
for better interpretations (and possibly for avoiding misinterpretations)
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