

THERIAK-DOMINO: Introduction to the toolset

Doug Tinkham

Laurentian University

Sudbury, Canada

Day 2 Part 2: Virtual Workshop, May 10-14, 2021

Objective

- Introduce new users to what tools are available in the suite of programs ۲
- Give some examples ۲

Topics Covered

- Theriak-Domino: What it is and where to get it ٠
- Gibbs minimization algorithm ۲
- Input files (databases, solution models) & program Thalia •
- **Programs Theriak and PlotXY** ۲
- Program Domino & pixel maps •
- Programs Therter/Therbin (Fe-Ti-O example) •
- Pitfalls, pointers, advice •

INTRODUCTION TO THERIAK-DOMINO

Suite of programs capable of

- Calculating and plotting thermodynamic properties of pure phases and solutions from a thermodynamic database
- Calculating equilibrium assemblages for a given bulk system composition
- Calculating and plotting equilibrium assemblage diagrams for a given bulk or range of bulk compositions
 - P-T, T-X, P-X, X-X diagrams and more
 - Ternary diagrams
 - Contour diagrams for phase composition or mode
 - Contour diagrams for various system/rock properties
 - Pixel maps of system and phase properties
 - It does not calculate petrogenetic grids nor does it do traditional reaction-based thermobarometry like AvePT or winTWQ

INTRODUCTION TO THERIAK-DOMINO

- Written and maintained by Christian de Capitani at the University of Basel, Switzerland
- Equilibrium calculations via Gibbs energy minimization
- Main algorithm is published (de Capitani & Brown, 1987)
- Written in fortran and source code distributed with programs
- Not technically open source (unlicensed), but a statement allowing user modification is provided, and source code is freely available for user modification and customization
- Comprehensive user manual for the main programs included in distribution (read it)
- Distributed with multiple thermodynamic databases and included solution models

Main publications for programs

Geochimica et Cosmochimica Acta Vol. 51, pp. 2639-2652 © Pergamon Journals Ltd. 1987. Printed in U.S.A. 0016-7037/87/\$3.00 + .00

The computation of chemical equilibrium in complex systems containing non-ideal solutions

CHRISTIAN DE CAPITANI and THOMAS H. BROWN Department of Geological Sciences, University of British Columbia, Vancouver, B.C., Canada, V6T 2B4

(Received October 2, 1986; accepted in revised form July 2, 1987)

Algorithm: de Capitani & Brown (1987), Geochimica

THERIAK-DOMINO User's Guide Vers. 11.03.2020 Christian de Capitani Konstantin Petrakakis

User manual: de Capitani

American Mineralogist, Volume 95, pages 1006–1016, 2010

The computation of equilibrium assemblage diagrams with Theriak/Domino software

CHRISTIAN DE CAPITANI^{1,*} AND KONSTANTIN PETRAKAKIS²

¹Mineralogisch-Petrographisches Institut, Universität Basel, Bernoullistrasse 30, CH-4056 Basel, Switzerland ²Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Domino: de Capitani & Petrakakis (2010), Am Min

THERIAK-DOMINO & ADD-ON PROGRAMS

- Theriak: Equilibrium assemblage calculation
- **Domino**: XY and ternary equilibrium assemblage diagram calculations
- Therbin & Therter: Binary and ternary phase diagrams
- Guzzler/Explot/PlotXY/Makemap: Output processors to produce editable graphics files
- **Thermo/Thalia**: Thermodynamic property calculators (pure phases and solutions)
- Others: Theriaq, Theriak3
- Add-ons or interfacing programs:
 - **Theria_G** (Gaidies *et al.*, 2008; distributed with Theriak-Domino)
 - **TheriakD** (Duesterhoeft & de Capitani, 2013; distributed with Theriak-Domino)
 - Bingo-Antidote (Duesterhoeft & Lanari, 2020; distributed with XMapTools)

DOWNLOADING THERIAK-DOMINO

Official THERIAK-DOMINO distribution site

<u>https://titan.minpet.unibas.ch/minpet/theriak/theruser.html</u>

Programs and translations of THERMOCALC files also downloadable from

- http://dtinkham.net/peq.html
- Updates coming with newly formatted files for the Holland & Powell databases

Programs and databases included with XMapTools distribution

https://www.xmaptools.com/

Gibbs Minimization Algorithm

 Algorithm published in 1987 (de Capitani & Brown, *Geochimica*)

Algorithmic flow (generalized)

- Find initial minimum G assemblage from the pool of database members (pure phases) and fictive phases with compositions of the system components
- Find several local minimums of each solution phase (multiple starting compositions, scans, and refinements), and add those to pool of fixed phase compositions; solution phase composition precision nearly at machine precision
- 2) Try to swap each fixed composition phase from pool into currently stable assemblage to check for new lower-G assemblage; check for convergence and iterate on step 1 or end

Similar to Perple_X in the sense you are minimizing discrete 'fixed-composition' phases in one of the steps, but the pool of fixed-composition phases are drawn from minimizations of solution models over continuous composition space

Geochimica et Cosmochimica Acta Vol. 51, pp. 2639-2652 © Pergamon Journals Ltd. 1987. Printed in U.S.A. 0016-7037/87/\$3.00 + .00

The computation of chemical equilibrium in complex systems containing non-ideal solutions

CHRISTIAN DE CAPITANI and THOMAS H. BROWN Department of Geological Sciences, University of British Columbia, Vancouver, B.C., Canada, V6T 2B4

(Received October 2, 1986; accepted in revised form July 2, 1987)

de Capitani & Brown (1987), Geochimica

Gibbs Minimization Algorithm – Loop 0

- Consider pure phases of dataset
- Do not consider solid solution space, just end-members of solution models

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

(2010) Univ. Calgary Theriak-Domino short course notes

Gibbs Minimization Algorithm – Loop 0

- Consider pure phases of dataset
- Do not consider solid solution space, just end-members of solution models
- Find combination of pure phases that forms minimum G assemblage for bulk system composition
- B1 + B2 assemblage is most stable

Gibbs Minimization Algorithm - Loop 1

- Do a 'reference' base change and translate the current stable hyperplane to G = 0.0
- Consider continuous solution model space, and find new minimum G compositions for all active solution models

Gibbs Minimization Algorithm – Loop 1

- Consider continuous solution model space, and find new minimum G compositions for all active solution models
- Attempt to add or swap all the new minimum points for each solution into the current minimum assemblage to find a lower G assemblage (negative G)
- Do the change of reference base along the way to get current stable assemblage hyperplane at G = 0.0

Gibbs Minimization Algorithm – Loop 2

- Minimize each solution model
 again to find new minimum G compositions
- Attempt to add or swap all the new minimum points of solution models to find a lower G assemblage (negative G)

Gibbs Minimization Algorithm

- Attempt to add or swap all the new minimum points of solution models to find a lower G assemblage (negative G)
- Points that were part of the old stable assemblage are replaced if better ones found
- Do the change of reference base along the way to get current stable assemblage hyperplane at G = 0.0

Gibbs Minimization Algorithm

 Iterate until reach convergence (decrease in G is below some threshold)

Databases and Solution Models

Databases:

- Flexible format that can accommodate multiple databases
- Main databases shipping with program:
 - variants of the Berman database (1988; Jun '92 update)
 - variants of the Holland & Powell databases (1998 ds5.5; 2011 ds6.2)
- Database file mixes solution models with the end-member thermodynamic database proper (not a separate file for database and solution models)

Solution Models:

- Accepts a wide variety of models (ideal mixing-on sites and molecular mixing for ideal activity; regular and symmetric formalism symmetric excess mixing; asymmetric-formalism and subregular asymmetric excess mixing; and a within-site excess mixing model)
- Special models that do not conform to the above models can be hard-coded and program recompiled
- Effective program use requires basic familiarity with the format of database files and solution model input format. Read the official user manual and comments in database files.

Database file: database members

- *** denotes a keyword flag
- GAS and MINERAL indicates the following data is for a pure phase/species; the difference controls output, not calculation

126	*** GA	AS DATA ***				
127	H20		H(2)O(1)		H20	code
128	SPC	PS94H20				
129	ST	0.0	-241810.0	188.8	0.0	
130	С3	40.1	0.008656	487500.0	-251.2	0.00
131	C02		C(1)O(2)		C02	code
132	SPC	PS94C02				
133	ST	0.0	-393510.0	213.7	0.0	
134	С3	87.8	-0.002644	706400.0	-998.9	0.00
135	*** M]	INERAL DATA ***				
136	and		AL(2)SI(1)O(5)		and	code
137	ST	0.0	-2588670.0	92.7	5.153	
138	С3	277.3	-0.006588	-1914100.0	-2265.6	0.00
139	V11	0.0000181	1442.0	6.89	-0.0048	0.00
140	ky		AL(2)SI(1)O(5)		ky	code
141	ST	0.0	-2592970.0	83.5	4.414	
142	С3	279.4	-0.007124	-2055600.0	-2289.4	0.00
143	V11	0.0000192	1601.0	4.05	-0.0025	0.00

Database file: database members

- SPC indicated the thermodynamic 127 • 128 properties are calculated by a 129 special routine specific to that 130 phase (PS94H2O & PS94CO2) 131
- ST, C3 and V11 indicate specific • types of thermodynamic values follow on that line
 - ST: reference state G,H,S,V •
 - C3: particular grouping of • heat capacity coefficients
 - V11: data go with a specific • EOS, in this case HP '11 dataset

126	*** GAS	DATA ***				
127	H20		H(2)O(1)		H20	code
128	SPC F	S94H20				
129	ST	0.0	-241810.0	188.8	0.0	
130	С3	40.1	0.008656	487500.0	-251.2	0.00
131	C02		C(1)O(2)		C02	code
132	SPC F	S94C02				
133	ST	0.0	-393510.0	213.7	0.0	
134	C3	87.8	-0.002644	706400.0	-998.9	0.00
135	*** MINE	RAL DATA ***				
136	and		AL(2)SI(1)O(5)		and	code
137	ST	0.0	-2588670.0	92.7	5.153	
138	СЗ	277.3	-0.006588	-1914100.0	-2265.6	0.00
139	V11	0.0000181	1442.0	6.89	-0.0048	0.00
140	ky		AL(2)SI(1)O(5)		ky	code
141	ST	0.0	-2592970.0	83.5	4.414	
142	C3	279.4	-0.007124	-2055600.0	-2289.4	0.00
143	V11	0.0000192	1601.0	4.05	-0.0025	0.00

APPROACHES AND PITFALLS

Database: solution model format

- *** SOLUTION indicates the following data describes mixing of phase components of a solution model
- (-SITE, MARGULES) indicates mixing is described by mixing on sites, and that the phase exhibits non-ideal mixing, defined by interaction parameters (between phase components)
- "SITE" would indicate all phase component proportions are restricted to be > 0
- "-SITE" indicates phase components proportions can be negative

929	*** SOLUTION	DATA ***								
930	BI14 (-SI	TE,MARGULE	S) M3(1):Mg,Fe,Al,	Ti,F3,Mn ∙	– M12(2):N	Mg,Fe,Mn	- T(2):S	3 i, Al – V((2):OH,O
931	phl	Mg - M	lg,Mg – S	i,Al – OH,OH						
932	annm	Fe – F	e,Fe – S	i,Al – OH,OH						
933	obi	Fe - M	lg,Mg – S	i,Al – OH,OH						
934	east	Al – M	lg,Mg – A	l,Al – OH,OH						
935	tbi	Ti — M	lg,Mg – S	i,Al - 0,0						
936	fbi	F3 — M	lg,Mg – A	l,Al – OH,OH						
937	mmbi	Mn – M	In,Mn - S	i,Al – OH,OH						
938	*** MARGULES	PARAMETER	\S ***							
939	phl – annm									
940	12	12000	0	0						
941	phl – obi									
942	12	4000	0	0						
943	phl – east									
944	12	10000	0	0						

Database: solution model format – site mixing

- M3(1), M12(2), T(2), V(2): Arbitrary names of sites, with site multiplicity indicated
- T(2):Si,Al simply means a site multiplicity of 2, and the entities that can mix on site T are denoted by the names Si and Al. Note that the <u>names</u> of entities mixing on the site is arbitrary (could be anything else that makes sense)
- tbi Ti Mg, Mg Si, Al O, O Site composition of phase component tbi

Database: solution model format – excess energy

- *** MARGULES Indicates data for interaction parameters between phase components follows next
- phl obi & 12 4000 0 0 specifies a binary interaction parameter to describe excess energy of mixing

Comparing TD and TC AX File Formats

White et al. (2000) FTO Ilmenite model & Holland & Powell (2011) ds6.2 update

The model has 3 phase components (ordered ilmenite, disordered ilmenite, and hematite)

involves ordering of Fe & Ti across sites

The TD equivalent of TC 'make' is 'COM'.

TC makes the new dataset member oilm from the existing dataset member ilm by stripping off the Landau ordering contributions at reference conditions, and does not add the Landau contributions at elevated P & T.

The TD entry for the member ilmD- has the Landau contribution removed at reference conditions by the file author, and does not add Landau ordering contributions at elevated P & T (it should match what the TC command "make 1 disordered ilm" does).

Both programs then adjust the Gibbs energy by:

-13607.5 + 9.426 * Tk (j/mol)

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Formatted for use in Theriak-Domino

!					
*** MINER	AL DATA ***				
ilmD-		FE(1)TI(1)0(3)	ilmD-	-c
ST	0.0	-1215398.4244	120.51831967	3.1873638661	
С3	138.9	0.005081	-1288800.0	-463.7	0.00
V11	0.000024	1700.0	8.3	-0.0049	0.00
hemD-		FE(2)0(3)		hemD-	-c
ST	0.0	-816087.2292	100.33766837	3.027	
C3	163.9	0.0	-2257200.0	-657.6	0.00
V11	0.0000279	2230.0	4.04	-0.0018	0.00
!======				Δχ	MODEL TIM00
! ref 0,-	-3				HODEL ILHO
!	Converted f	rom HPx-eos we	bsite files		
!	tc-mp50MnNC	KFMASHT0.txt &	tc-ds62.txt (ds	62a)	
! note:	This versio	n does not con	tain Mn & Mg mem	bers, so it may no	ot be the
!	best choice	at lower T's	if your ilm has	a significant amou	unt of Mn.
! entry:	D.K. Tinkha	m. Sun 11 Apr	2021 19:33:10 (v	ia dsaxcnvrt.wl)	
1					
*** MINER	AL DATA ***				
! Requir	ed dataset p	hase component	s for COM's: {il	mD-, hemD-}	
oilm1		FE(1)TI(1)0(3)	oilm1	code
ST	0.0	-13607.5	-9.426	0	
COM	ilmD-[1]				
dilm1		FE(1)TI(1)0(3)	dilm1	code
ST	0.0	1992.8	2.1	0	
COM	ilmD-[1]				
dhem1		FE(2)0(3)		dhem1	code
ST	0.0	0.0	0.0	0.0	
COM	hemD-[1]				
*** S0LUT	ION DATA ***				
ILM00	(-SITE,MARGU	LES)1/2 A	(2):Fe,Ti,F3 - B	(2):Ti,Fe,F3	
oilm1	Fe,Fe	- Ti,Ti			
dilm1	Fe.Ti	- Fe.Ti			
dhem1	F3, F3	- F3.F3			
*** MARGU	ILES PARAMETE	RS ***			
oilm1 - d	lilm1				
12	15600.0	0	Ø		
oilm1 – d	lhem1	v	-		
12	26600.0	0	a		
dilm1 - d	lhem1	U	0		
0 T (III - 0	ILC IIII				
12	11000	0	A		
12	11000	0	0		

THERMOCALC tc-mp50MnNCKFMASHTO.txt ax file. HPx-eos website

TImor	
s rumen:	te: FTO
⊌ White	RW, Powell, R, Holland, TJB & Worley, BA (2000) The effect of TiO2 and
Fe203	on metapelitic assemblages at greenschist and amphibolite facies conditio
minera	l equilibria calculations in the system K20-Fe0-Mg0-Al203-Si02-H20-Ti02-F
Journa	l of Metamorphic Geology. 18. 497–511.
	· · · · · · · · · · · · · · · · · · ·
F_m	Formula Mixing sites
L	
oilm	FoTiO2 1 0 0 1 0 - ordered ilm
dnem	Fe203 0 0 1 0 0 1 - disordered nem
x(1lm)	= 1 - XFe3A
Q(ilm)	= x(Fe2,A) - x(Fe2,B) - order variable
NOTE:	Q(ilm) must have a range of -x to +x
erbatin	
(ilm)	0.80
(ilm)	0.55 range -0.99 0.99
psub =	{ph -> 1 - x, po -> Q, pd -> x - Q};
n(oil	
PLOTI) 11 0 1 1 Q
p(dilr) 11 0 1 1 Q) 11 0 2 1 x -1 Q
p(dilr p(dher) 11 0 1 1 Q) 11 0 2 1 x -1 Q) 11 1 1-1 x
p(dilr p(dher) 11 0 1 1 Q) 11 0 2 1 x -1 Q) 11 1 1 -1 x
p(dil p(dher) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 -1 x
p(dilr p(dher sf W(oilr) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dher sf W(oilr W(oilr) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dher ; f W(oilr W(oilr W(dilr) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dher) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dher f W(oilr W(oilr W(dilr) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dher sf W(oilr W(oilr W(dilr 6) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dilr p(dher G W(oilr W(oilr W(dilr G xFe2A) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dilr p(dher f W(oilr W(oilr W(dilr 6 xFe2A xTiA) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilr p(dilr p(dher f W(oilr W(oilr W(dilr 6 xFe2A xFe2A xFe3A) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilt p(dher) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilu p(dilu p(dher if W(oilu W(oilu W(dilu 6 xFe2A xFe2A xFe2A xFe3A xFe3A xFe2B xTiB) 1 1 0 1 1 Q) 1 1 0 2 1 x -1 Q) 1 1 1 1 -1 x
p(dilu p(dilu p(dher f W(oilu W(oilu W(dilu 6 xFe2A xFe2A xFe2A xFe2A xFe3A xFe3A xFe3B xFe3B) 1 1 0 1 1 Q) 1 1 0 2 1 $\times -1$ Q) 1 1 1 1 -1 \times
p(dilt p(dilt p(dher f W(oilt W(oilt W(dilt 6 xFe2A xFe2A xFe2A xFe2A xFe3A xFe3A xFe3B) 1 1 0 1 1 0) 1 1 0 2 1 $\times -1$ 0) 1 1 1 1 1 -1 \times ,dilm) 15.6 0 0 ,dhem) 26.6 0 0 ,dhem) 11 0 0
y(dilu p(dilu p(dilu f W(oilu W(oilu W(dilu 6 xFe2A xFe2A xFe2A xFe2A xFe3A xFe3B xFe3B oilm) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x
p(dilu p(dilu p(dher) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x
y(dilu p(dilu p(dher f W(oilr W(dilu 6 xFe2A xFe2A xFe2A xFe2A xFe2A xFe2B xFe3B oilm) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x
p(dilu p(dilu p(dilu p(dilu v(oilu W(oilu W(oilu W(dilu 6 xFe2A xFe2A xFe2A xFe2A xFe2A xFe2B xFe2B xFe3B 	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>
p(dilu p(dilu p(dher 	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 -1 x </pre>
p(dilt p(dilt p(dilt p(dilt w(oilt W(oilt W(dilt 6 xFe2A xFe3A xFe3B xFe3B xFe3B dilm	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>
p(dilr p(dilr p(dher s sf W(oilr W(dilr G xFe2A xTiA xFe2A xTiA xFe3A xFe3B xTiB xFe3B dilm) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x
p(dilr p(dilr p(dher sf W(oilr W(oilr W(dilr 6 xFe2A xFe3A xFe3A xFe3B xTiB xFe3B oilm	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>
p(dilt p(dilt p(dilt p(dilt v(oilt W(oilt W(dilt 6 xFe2A xFe2A xFe2A xFe2B xFe2B xFe2B xFe2B oilm dilm	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>
p(dilt p(dilt p(diev f W(oilt W(oilt W(dilt G xFe2A xFe2A xFe2A xFe2A xFe2B xFe3B 	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>
p(dilu p(dilu p(dher if W(oilu W(oilu W(dilu 6 xFe2A xFe2A xFe2A xFe2A xFe3B oilm dilm	<pre>) 1 1 0 1 1 0) 1 1 0 2 1 x -1 0) 1 1 1 1 1 -1 x </pre>

Program Thalia

Calculates thermodynamic properties of both pure phases and solution models at P & T

Can plot properties across solution model binaries:

- chemical potential
- G (mech, ideal mix, excess mix, etc.)
- Activities of phase components
 - The plot of Gibbs energy across the disordered-ordered binary of ilmenite (White et al. 2000) shows our calculated proportion of the ordered member should be very high or low (close to 1 or -1)
 - Thalia is useful for looking at other solution models (amphiboles, pyroxenes, etc.)

Program Thalia

Calculates thermodynamic properties of both pure phases and solution models at P & T

Can plot properties across solution model binaries:

- chemical potential
- G (mech, ideal mix, excess mix, etc.)
- Activities of phase components

Program Theriak

Calculates equilibrium assemblage for a fixed bulk composition

Loops over several input P & T

Output includes phase and system properties for each input P & T

Can plot results easily, in spreadsheet or using the plotxy program

Can pass arguments on the command line to automate calculations and interface with your own programs (written in different languages); see add-on program Theriak_D (Duesterhoeft & de Capitani, 2013) for examples am THERIAK, Version (dd.mm.yy) 15.r187-gf (macOSX, gfortran)

putation of equilibrium assemblages at given PT"

ten by:

Christian de Capitani (Basel, Switzerland) E-mail: christian.decapitani@unibas.ch

t dialogue and help by:

Konstantin Petrakakis (Vienna, Austria) E-mail: Konstantin.Petrakakis@univie.ac.at

ialization

ialization-file: /Users/spinel/Docs/PEQ4-2018/ASH/theriak.ini
ram's directory: /usr/local/bin/THERDOM/
ing directory: /Users/spinel/Docs/PEQ4-2018/ASH/

23.04.2021 - 08:49:56

-----base definition -----r ["?" | CR | "files" | database filename] <td-mp50MnNCKFMASHTO.txt>?

abase for this run: td-mp50MnNCKFMASHT0.txt

t from file therin.txt

Theriak: assemblage output

Lists abundance of stable phases

Lists the phase composition (proportions of components and site composition)

Look for ** in output beneath the activity columns; if you se them it indicates the calculation failed to converge a proper solution

Columns x & x indicate the proportion (or mole fraction) each phase component

Columns activity and act.(x) lists the activity of each phase component calculated in 2 ways; they should be very close to one another but are rarely identical

	5000.00 bar	P(Gas) = 5000.	00 bar T =	550.00 C =	= 823.15 H	<				
	le phases: 11 estions: 24530 = 2.11135E-12	loop = 69 ridiculous phas G(System) = -1	loop2 = 1 ses: 1125 .32423807.28	max.phases = non-ideal mir stepsize = 0.	1640 1: 4845 00000E+00	gcalc newto R =	a = 1934771 n: 2298 8.3144100		blkshift = : ideal min.: MaxG(-) = (3.12250E-15 0 9.00000E+00
	phase	N	mol%			×	×		activity	act.(x)
ē	1 P0_trov	- 5.140287	2.822664	trot trov		0.066571 0.933429	6.65707E- 9.33429E-	·02 ·01	5.88502E-01 9.97608E-01	5.88502E-0 9.97608E-0
O		[Fe(M)]	= 8.83321E-01	[v(M)]	= 1.166	79E-01				
	2 FLUID3_H2O	94.983537	52.157911	H20 H2S CH4		0.984071 0.005305 0.000087	9.84071E- 5.30537E- 8.66262E-	-01 -03 -05	9.84732E-01 1.19971E-02 6.43936E-04	9.84732E-0 1.19970E-0 6.43832E-0
of				C02 02 S2		0.010435 0.000000 0.000000	1.04354E- 6.76935E- 1.72511E-	-02 -27 -08	4.87212E-02 2.66117E-26 1.67080E-08	4.87213E-0 6.53412E-2 1.66788E-0
				H2 C0		0.000095	9.54989E- 6.15911E-	-05 -06	6.62743E-04 5.43405E-05	6.62767E-0 5.43240E-0
		[h2o(M)] [co2(M)] [h2(M)]	= 9.84071E-01 = 1.04354E-02 = 9.54989E-05	[h2s(M)] [s2(M)] [co(M)]	= 5.3053 = 1.7253 = 6.1593	37E-03 L1E-08 L1E-06	[ch4(M)] [o2(M)]	= 8. = 6.	.66262E-05 .76935E-27	
e	3 GRT_spss	0.004862	0.002670	Py alm spss gr kho		0.139167 0.082306 0.704593 0.073167 0.000768	1.39167E- 8.23057E- 7.04593E- 7.31667E- 7.67967E-	-01 -02 -01 -02 -04	4.69940E-03 6.80192E-04 3.35855E-01 7.30673E-04 2.45168E-08	4.69940E-0 6.80192E-0 3.35855E-0 7.30673E-0 2.45168E-0
		[Mg(X)] [Ca(X)]	= 1.39935E-01 = 7.31667E-02	[Fe(X)]	= 8.2305	57E-02	[Mn(X)]	= 7.	.04593E-01	

[F3(Y)]

= 7.67967E-04

[Al(Y)]

<u>= 9.99232E-01</u>

Theriak: assemblage output

Below the phase composition output on the last slide, a nice data table with the main assemblage information appears

Phase abundance (moles, volume, weight), density and H2O content is listed

I typically look at vol% on a first pass

All of the information seen on screen appears in a simple text log file

PHASE EQUILIBRIUM MODELLING:	
APPROACHES AND PITFALLS	

••				/Docs/PEQ4	-2018/ASH	theriak-20-0	010-31	
olumes and densiti	es of stab	le phases:						
solid phases	N	volume/mol	volume[ccm]	vol%	wt/mol	wt [g]	wt %	density [g/ccm]
P0_trov	5.1403	18.0263	92.6603	3.9306	81.3941	418.3889	6.4302	4.515297
GRT_spss	0.0049	118.8915	0.5780	0.0245	479.1731	2.3297	0.0358	4.030340
IRG_ma	0.1786	131.6385	23.5100	0.9973	396.6954	70.8479	1.0889	3.013520
/M_mu	2.1203	141.6728	300.3942	12.7424	397.4061	842.6351	12.9504	2.805098
CHL14_ames	0.9253	211.0187	195.2491	8.2823	565.8082	523.5248	8.0460	2.681318
(y	1.8769	44.5727	83.6606	3.5488	162.0456	304.1513	4.6745	3.635538
1	72.1245	22.9979	1658.7158	70.3611	60.0843	4333.5508	66.6023	2.612594
ru	0.1400	19.0341	2.6648	0.1130	79.8658	11.1812	0.1718	4.195934
total of solids			2357.4328	100.0000		6506.6098	100.0000	2.760040
gases and fluids	N	volume/mol	volume[ccm]		wt/mol	wt [g]		density [g/ccm]
LUID3_H20	94.9835	21.8768	2077.935		18.3701	1744.8605		0.839709
(FM-BUFFER	2.5412	19.0511	48.412		31.9988	81.3146		1.679627
-PPS-BUFFER	2.0721	-10.7346	-22.243		-64.1300	-132.8842		5.974121
20 content of stab	le phases:							
solid phases	N	H2O[pfu]	H20[mol]	H2O [g]	phase	solids	H20.solid	
IRG_ma	0.1786	1.000	0.1786	3.2174	4.54134	0.04945	2.9766	
VM_mu	2.1203	1.000	2.1203	38.1985	4.53322	0.58707	35.3389	
CHL14_ames	0.9253	4.000	3.7011	66.6759	12.73596	1.02474	61.6845	
total H2O in solid	s		6.0000	108.0918		1.66126		
and fluide	N	420[nfu]	420[=0]]	20 [2]	wt% of			
gases and flunds	N	H20[pTu]			pnase			
	94.9835	0.990	94.0000	1693.4362	97.05281			

Theriak – Loop Tables

Theriak can automatically loop over a sequence of P-T and save hundreds of system and phase properties to a text file (comma-delimited)

System Properties:

U, G, H, S, V, TS, PV

System composition (for fractionation)

Volume and density of solids

Moles, weight, and weight % H2O in solids

- Fractionation calculations (can remove variable percentages of any phase produced at each step)
- Can manually specify changes in bulk composition at each step
- Program plotxy reads and plots loop table output from theriak

Phase Properties:

```
Abundance (moles and volume)
```

Density and molar volume

Mg# (Mg / (Mg+Fe_T)

Si p.f.u., Al p.f.u.

Moles of H2O and weight of H2O in each phase

Moles, proportion, & activity of each phase component All site fractions

Theriak & PlotXY – Phase abundance & Grt chemistry

Predicted mineral abundance and garnet composition: 465 °C @ 5 kb to 680 °C @ 7kb

- Calculated using theriak driver file to generate loop table in 100 increments up T
- File setup time: 5 min; Calculation time: 1 min 1.8 sec; Plotting and drafting time: 30-45 min
- Postscript plots generated using program plotxy shown below, with manual touch up of labels and coloring

Theriak & PlotXY – Simple garnet fractionation

Predicted mineral abundance and garnet composition: 465 °C @ 5 kb to 680 °C @ 7kb

- 100 increments up T, 98% of all garnet removed from system at each step
- Grt production stops by 600 °C along this P-T vector

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Constant bulk vs garnet fractionation

- St > 4x more abundant in Grt fractionating case
- Bt consumed & Ms produced in fractionating case; opposite in non-fractionation run

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Program PlotXY

- Generates quality output in postscript and svg format ٠
- Can plot all variables saved in loop table during run ٠
- Need to add or subtract variables at times ٠

 $103+107 = n_{alm} + n_{gr} = total moles of garnet$

	~/Docs/PEQ-2021/AWBZ	/PT-Mn	NCKFMASH-ds62	a/wo-mic/Frac — plotxy-2	20-010if
~/MYCODE/G	ITLAB_SpinelDev/TD/tddev — -		Z/PT	-MnNCKFMASH-ds62a/wo-m	ic/Frac — plotxy-20-010if
Enter ["?" CR " hktab.tab	files" filename] < >?				
Variables available:					
[b]: b-rich solution n : mass [mol]	a : activity blk: bu pc: percent wt : we	lk ight	Mg# : Mg/(Mg+Fe) x : mole fracti	mvol: molar volume on	
1: NR(step)	2: Pressure	3:	Temperature	4: Al_pfu_[abh]	5: Al_pfu_[annm]
6: Al_pfu_[daph]	7: Al_pfu_[mu]	8:	G_overstep	9: G_system	10: G_tot
11: H_tot	12: Mg#_[alm]	13:	Mg#_[annm]	14: Mg#_[daph]	15: Mg#_[fst]
16: Mg#_[gr]	17: Mg#_[mu]	18:	PVtot	19: S_tot	20: Si_pfu_[abh]
21: Si_pfu_[annm]	22: Si_ptu_[daph]	23:	Si_pfu_[mu]	24: IS_tot	25: U_tot
26: V_H2U	27: V_[abn]	28:	v_laumj V [mu]	29: V_[annm]	30: V_[dapn]
31: V_[[St] 36: V cill	32: V_[gr] 37: V solids	33:	v_[mu] V tot	34: V_ab	so: v_q 40: a abb [abb]
41: a afchl [danh]	42. a alm [alm]	43.	a alm [gr]	44: a ames [danb]	45: a anC [abh]
46: a annm [annm]	47: a cel [mu]	48:	a clin [daph]	49: a daph [daph]	50: a east [annm]
51: a fcel [mu]	52: a fst [fst]	53:	a gr [alm]	54: a gr [gr]	55: a mat [mu]
56: a mmbi [annm]	57: a mmchl [daph]	58:	a mnstm [fst]	59: a mstm [fst]	60: a mu [mu]
61: a_obi_[annm]	62: a_ochl1_[daph]	63:	a_ochl4_[daph]	64: a_pa_[mu]	65: a_phl_[annm]
66: a_py_[alm]	67: a_py_[gr]	68:	a_san_[abh]	69: a_spss_[alm]	70: a_spss_[gr]
71: blk_AL	72: blk_CA	73:	blk_E	74: blk_FE	75: blk_H
76: blk_K	77: blk_MG	78:	blk_MN	79: blk_NA	80: blk_0
81: blk_SI	82: mvol_H2O	83:	mvol_[abh]	84: mvol_[alm]	85: mvol_[annm]
86: mvol_[daph]	87: mvol_[fst]	88:	mvol_[gr]	89: mvol_[mu]	90: mvol_ab
91: mvol_q	92: mvol_sill	93:	mvol_zo	94: n_H20	95: n_H20_H20
96: n_H20_[annm]	97: n_H20_[daph]	98 •	n_H20_[fst]	99: n_H20_[mu]	100: n_H20_solids
101: n_H20_zo	102: n_[abh]	103:	n_[alm]	104: n_[annm]	105: n_[daph]
106: n_[fst]	107: n_[gr]	108:	n_[mu]	109: n_ab	110: n_abh_[abh]
111: n_arcnt_[daph]	112. n_dim_taimj	113:	n_alm_[gr]	114: n_ames_[daph]	115: n_anc_[abn]
116: n_annm_[annm]	117: n_cet_[mu]	122.	n_ctin_[dapn]	119: n_dapn_[dapn]	120: n_east_[annm]
121; n_rcet_[mu]	122: N_ISt_[ISt]	128.	n mnetm [fet]	124. II_gr_[gr]	125; n_mat_[mu]
131: n obi [annm]	132: n ochl1 [daph]	133.	n_och]4 [danh]	134: n na [mu]	135: n_mu_[mu]
136: n ny [alm]	137: n ny [gr]	138:	n a	139: n san [abh]	140: n sill
141: n spss [alm]	142: n spss [gr]	143:	n zo	144: pcH20 solids	145: rho H20
146: rho_[abh]	147: rho_[alm]	148:	rho_[annm]	149: rho_[daph]	150: rho_[fst]
151: rho_[gr]	152: rho_[mu]	153:	rho_ab	154: rho_q	155: rho_sill
156: rho_solids	157: rho_zo	158:	wt_H20_H20	159: wt_H20_[annm]	160: wt_H20_[daph]
161: wt_H20_[fst]	162: wt_H20_[mu]	163:	wt_H2O_solids	164: wt_H20_zo	165: x_Al(M1)_[daph
166: x_Al(M2A)_[mu]	167: x_Al(M3)_[annm]	168:	x_Al(M4)_[daph]	169: x_Al(T)_[annm]	170: x_Al(T1)_[mu]
171: x_Al(T2)_[daph] 172: x_Ca(A)_[abh]	173:	x_Ca(A)_[mu]	174: x_Ca(X)_[alm]	175: x_Ca(X)_[gr]
176: x_Fe(M1)_[daph] 177: x_Fe(M12)_[annm]	178:	x_Fe(M23)_[daph]	179: x_Fe(M2A)_[mu]	180: x_Fe(M3)_[annm
181: x_Fe(M4)_[daph] 182: x_Fe(X)_[alm]	183:	x_Fe(X)_[fst]	184: x_Fe(X)_[gr]	185: x_K(A)_[abh]
186: x_K(A)_[mu]	187: x_Mg(M1)_[daph]	188:	x_Mg(M12)_[annm]	189: x_Mg(M23)_[daph]	190: x_Mg(M2A)_[mu]
191: x_Mg(M3)_[annm] 192: x_Mg(M4)_[daph]	193:	x_Mg(X)_[alm]	194: x_Mg(X)_[fst]	195: x_Mg(X)_[gr]
196: x_Mn(M1)_[daph	J 197: x_Mn(M12)_[annm]	198:	x_Mn(M23)_[daph]	199: x_Mn(M3)_[annm]	200: x_Mn(X)_[alm]
201: x_Mn(X)_[fst]	202: x_Mn(X)_[gr]	203:	x_Na(A)_[abh]	204: X_Na(A)_[mu]	205: x_ST(I)_[annm]
200: X_S1(II)_[MU]	207: X_ST(12)_[daph]	208:	x_aon_[abh]	209: X_archt_[daph]	210: x_atm_[atm]
211: X_alm_[gr]	212: x_ames_[daph]	213:	x_anc_[abn]	214: X_annm_[annm]	215. X_Cet_[mu]
2210: X_ctin_[daph]	222: x gr [gr]	218:	x_east_[annm]	224. x mmbi [appm]	220: X_ISt_[ISt]
221. x_gr_[atm]	222. x_gr_LgrJ 227: x mstm [fst]	223.		229: x obi [annm]	230: x ochl1 [daph]
231: x ochl4 [daph]	232: x pa [mu]	233:	x phl [appm]	234: x pv [a]m]	235: x pv [gr]
236: x san [abh]	237: x spss [a]m]	238:	x spss [gr]		2001
Loor x_sun_[ubit]	2011 X_0000_[utm]	2301			

definition example for axes: 3,5,6+7,8+9

PHASE EQUILIBRIUM MODELLING: T. APPROACHES AND PITFALLS

- Details provided in de Capitani & ٠ Petrakakis (2010, Am. Min.)
- Searches for assemblage changes ٠ over the diagram
- Constrains the location of each ٠ assemblage boundary, but does not calculate the boundary directly
- Involves several levels of refinement ٠ to build up a complete diagram
- User can control the density of initial ٠ grid points; defaults to 10 intervals (11 points) in X and Y directions

MnNCKFMASHO Equilibrium Assemblage Diagram

Initial Pass

Calculates Equilibrium assemblage at ٠ a series of equally spaced points in X direction, starting at base of diagram

Initial Pass

- Calculates Equilibrium assemblage at a series of equally spaced points in X direction, starting at base of diagram
- Records the assemblage at each point and identifies adjacent points with different assemblages

Initial Pass

- Calculates Equilibrium assemblage at a series of equally spaced points in X direction, starting at base of diagram
- Records the assemblage at each point and identifies adjacent points with different assemblages

Initial Pass

- Calculates Equilibrium assemblage at a series of equally spaced points in X direction, starting at base of diagram
- Records the assemblage at each point and identifies adjacent points with different assemblages
- Goes back to intervals with assemblage changes and does more minimizations at interval halves, repeating until it has located assemblage change boundaries to within some pre-defined x-precision

Temperature [C]

Initial Pass

- Calculates Equilibrium assemblage at a series of equally spaced points in X direction, starting at base of diagram
- Records the assemblage at each point and identifies adjacent points with different assemblages
- Goes back to intervals with assemblage changes and does more minimizations at interval halves, repeating until it has located assemblage change boundaries to within some pre-defined x-precision
- Iterates above procedure at progressively higher Y values
- Then does the same procedure at intervals along the the X axis

Initial Pass

- Can plot the diagram at the end of initial pass (guzzler & explot)
- Domino starts several levels of refinement
- Identifies where lines have an "openend" or have large changes in angle ("bump"), and does more minimizations in those specific areas to complete boundaries

Domino closely 'brackets' the locations of lines on the diagram by doing G minimizations very close to assemblage changes along the grid

THERMOCALC solves a set of non-linear equilibria to calculate the locations of lines

Program Domino – Raw Output

Final Diagram

- Example of raw undrafted diagram (except title and legend at right)
- User can control the size of labels and types of labels
- Postscript and SVG graphics output produced by bundled programs guzzler & explot
- Polygon fills are not produced by bundled programs, so fills need constructed manually

Note: Considering pure microcline for low-T Kfs stability has resulted in destabilizing ternary Kfs (using san member) at low-P/high-T. Dealing with such issues may require calculating the diagram twice.

Bulk(1)= MN(0.13)NA(3.68)CA(1.49)K(5.42)FE(6.60)MG(5.90)AL(22.88)SI(69.89)H(35)O(?) O(0.198)

Average Waterville Fm. Biotite Zone composition used in Tinkham *et al.* (2001)

PHASE EQUILIBRIUM MODELLING APPROACHES AND PITFALLS

Program Domino - Contours

Manually drafted Domino output

Contours of melt vol % and X_{An}

After Jørgensen et al. (2019)

After Jørgensen et al. (2019)

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Program Domino – pixel maps

- Can produce 'pixel maps' of system and phase properties
- Minimizations at an array of X-Y points (up to 250 pts in X and Y)
- Produces grayscale pgm and ps images
- Can plot gradients along X or Y of any property

- Output on left was generated from program makemap
- Can easily convert to color with 3rd-party software (ImageJ, Mathematica, Matlab, etc.)

Domino – pixel maps

- For this MnNCKFMASH calculation, 263 different files saved that can be mapped
- Maps produced by bundled program makemap
- A complexity in the way phases are identified sometimes requires user to combine output from more than one file to produce a complete map

System properties

U, G, H, S, V, V_solids, TS, PV %H2O in solids weight of solids density of solids

Phase properties

Al pfu Si pfu Mg# moles of phase moles & weight of H2O in phase density of phase proportion (x_) of end members

~/Docs/PEQ-2021/AWE	2/PT-MNNCKFMASH-ds62a-2	/5pix — -zsn	~/Docs/PEQ-2021/AWBZ/PI-MnI	NCKFMASHO-ds62a — -zs
'-axis : Pressure [Bar]	1000.00000 10000	.00000		
unctions available for	mapping:			
b]: b-rich solution	n: mass [mol] wt: wei	ght x: mole fraction		
1: Al_pfu_[abh]	2: Al_pfu_[ames]	3: Al_pfu_[anC]	4: Al_pfu_[annm]	5: Al_pfu_[clin]
6: Al_pfu_[daph]	7: Al_pfu_[east]	8: Al_pfu_[fm]	9: Al_pfu_[fs]	10: Al_pfu_[h2oL]
11: Al_pfu_[mu]	12: Al_pfu_[pa]	13: Al_pfu_[phl]	14: G_system	15: G_tot
16: H_tot	17: Mg#_[alm]	18: Mg#_[ames]	19: Mg#_[annm]	20: Mg#_[clin]
21: Mg#_[daph]	22: Mg#_[east]	23: Mg#_[fcrd]	24: Mg#_[fm]	25: Mg#_[fs]
26: Mg#_[fst]	27: Mg#_[gr]	28: Mg#_[h2oL]	29: Mg#_[hcrd]	30: Mg#_[mu]
31: Mg#_[pa]	32: Mg#_[phl]	33: Mg#_[spss]	34: PVtot	35: S_tot
36: Si_pfu_[abh]	37: Si_pfu_[ames]	38: Si_pfu_[anC]	39: Si_pfu_[annm]	40: Si_pfu_[clin]
41: Si_pfu_[daph]	42: Si_pfu_[east]	43: Si_pfu_[fm]	44: Si_pfu_[fs]	45: Si_pfu_[h2oL]
46: Si_pfu_[mu]	47: Si_pfu_[pa]	48: Si_pfu_[phl]	49: TS_tot	50: U_tot
51: V_solids	52: V_tot	53: assemblage	54: n_H20	55: n_H20_H20
56: n_H20_[ames]	57: n_H20_[annm]	58: n_H20_[clin]	59: n_H20_[daph]	60: n_H20_[east]
61: n_H20_[fcrd]	62: n_H20_[fst]	63: n_H20_[h2oL]	64: n_H20_[hcrd]	65: n_H20_[mu]
66: n_H20_[pa]	67: n_H20_[phl]	68: n_H20_solids	69: n_H20_zo	70: n_[GRT]
71: n_[abh]	72: n_[alm]	73: n_[ames]	74: n_[anC]	75: n_[annm]
76: n_[clin]	77: n_[daph]	78: n_[east]	79: n_[fcrd]	80: n_[fm]
81: n_[fs]	82: n_[fst]	83: n_[gr]	84: n_[h2oL]	85: n_[hcrd]
86: n_[mu]	87: n_[pa]	88: n_[phl]	89: n_[spss]	90: n_ab
91: n_and	92: n_ky	93: n_mic	94: n_q	95: n_sill
96: n_zo	97: pcH20_solids	98: rho_H20	99: rho_[abh]	100: rho_[alm]
101: rho_[ames]	102: rho_[anC]	103: rho_[annm]	104: rho_[clin]	105: rho_[daph]
106: rho_[east]	107: rho_[fcrd]	108: rho_[fm]	109: rho_[fs]	110: rho_[fst]
lll: rho_[gr]	112: rho_[h2oL]	113: rho_[hcrd]	114: rho_[mu]	115: rho_[pa]
116: rho_[phl]	117: rho_[spss]	118: rho_ab	119: rho_and	120: rho_ky
121: rho_mic	122: rho_q	123: rho_sill	124: rho_solids	125: rho_zo
126: vol_H20	127: vol_[abh]	128: vol_[alm]	129: vol_[ames]	130: vol_[anC]
131: vol_[annm]	132: vol_[clin]	133: vol_[daph]	134: vol_[east]	135: vol_[fcrd]
136: vol_[fm]	137: vol_[fs]	138: vol_[fst]	139: vol_[gr]	140: vol_[h2oL]
141: vol_[hcrd]	142: vol_[mu]	143: vol_[pa]	144: vol_[phl]	145: vol_[spss]
146: vol_ab	147: vol_and	148: VOL_KY	149: VOL_MIC	150: VOL_q
151: vol_sill	152: vol_zo	153: wt_H20_H20	154: wt_H20_[ames]	155: wt_H20_[annm]
156: wt_H20_[clin]	157: wt_H20_[daph]	158: wt_H20_[east]	159: wt_H20_[fcrd]	160: wt_H20_[fst]
161: wt_H20_[h2oL]	162: wt_H20_[hcrd]	163: wt_H20_[mu]	164: wt_H20_[pa]	165: wt_H20_[phl]
166: WT_H2U_SOLIDS	167: WT_H2U_ZO	168: X_ADL_[NZOL]	169: x_abn_[abn]	170: x_abn_[anc]
TT: X_atcht_[ames]	172: X_atcht_[clin]	178: x_archt_[daph]	174: X_atm_[atm]	175: X_atm_[gr]
	192: x apt [b2ol]	192: x appm [appm]	184: x appm [cast]	180. X_anc_[abh]
	187: x_cel [n20L]	188: x clin [amms]	189: x clip [clip]	105: X_annm_[pnt]
191: x ord [ford]	192: x crd [bcrd]	193: x daph [ames]	194: x daph [clip]	195: v daph [daph]
196: x east [annm]	197: x east [east]	198: x east [ph]]	199: x ep [fm]	200: x en [fs]
201: x fa2[[b20]]	202: x fcel [mu]	203: x fcel [pa]	204: x ford [ford]	205: x ford [bord]
206: x fm [fm]	207: x fm [fs]	208: x fo21 [h201]	209: x fs [fm]	210: x fs [fs]
211: x fst [fst]	212: x gr [a]m]	213: x gr [gr]	200. x_r5_[rm]	215: x h2ol [h2ol]
216: x hcrd [fcrd]	217: x hord [hord]	218: x kspl [h201]	219: x mat [mu]	220: x_n20C_[n20C]
21: x mgts [fm]	222: x mgts [fs]	223: x mmbi [appm]	224: x mmbi [east]	225: x mmbi [pb]]
226: x mmchl [ames]	227: x mmchl [clin]	228: x mmchl [daph]	229: x mpcd [fcrd]	230: x mncd [hcrd]
231: x mnopx [fm]	232: x mnopx [fs]	233: x mostm [fst]	234: x mstm [fst]	235: x mu [mu]
236: x mu [pa]	237: x obi [annm]	238: x obi [east]	239: x obi [ph]]	240: x ochl1 [ames
241: x ochli [clin]	242: x ochl1 [daph]	243: x och]4 [ames]	244: x och]4 [c]in]	245: x och]4 [daph
246: x odi [fm]	247: x odi [fs]	248: x pa [mu]	249: x pa [pa]	250: x phl [annm]
251: x phl [east]	252: x ph] [ph]]	253: x py [alm]	254: x pv [gr]	255: x pv [spss]
256: x g4L [h2ol]	257: x san [abh]	258: x san [anC]	259: x s]1 [h201]	260: x spss [GRT]
		200. X_Sun_[unc]	200. X_302_[1202]	2001 x_3p33_[0k1]

AWBZ: H2O, melt, density and volume maps

Programs Therter and Therbin

Calculates ternary phase diagram at a fixed P & T

- Phases lie within the plane of the diagram
- Tie-lines connect coexisting phases
- Good for simple systems & visualizing miscibility gaps

Program Therbin is the same, just plots a binary system instead of ternary

THERIAK-DOMINO – add-on, extension, integration

THERIAK_D: An add-on to implement equilibrium computations in geodynamic models

Erik Duesterhoeft

Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, DE-14476 Potsdam-Golm, Germany (eduester@geo.uni-potsdam.de)

Institute of Geosciences, University of Kiel, Ludewig-Meyn-Str. 10, DE-24118 Kiel, Germany (ed@min.uni-kiel.de)

Christian de Capitani

Institute of Mineralogy and Petrography, University of Basel, Basel, Switzerland

Duesterhoeft & de Capitani (2013) give examples of how to call Theriak from other program, and how to link directly to Theriak subroutines

Other examples: Theria_G (Fred Gaidies) Bingo-Antidote (Duesterhoeft & Lanari, 2020)

Usage Pitfalls & Pointers

Three most common user issues I've noticed

- 1. Using solution models with ferric iron members when the bulk system composition is ferric free
 - This can result in failed calculations or diagrams with many short squiqqly lines!
 - The program tries to make a ferric member stable because there is no explicit ferric- or ferrous-iron system component, only an FE system component; look in the output for pure elements in your assemblage, which is often a sign that this problem is occurring
 - Can be resolved by 'commenting out' all ferric-bearing members (put an ! in front of all ferric phase components in the site composition lines to comment them, or comment all ferric phase component entries (! or *** MuNERAL DATA ***)
 - Alternatively, can resolve this by adding a small amount of extra oxygen to stabilize a small amount of ferric iron components (see point 2 on how to add extra oxygen)

Usage Pitfalls & Pointers

Three most common user issues I've noticed

2. Entering bulk system compositions

System composition is input as molar elements, not as oxides, and not as weight percent.

- I would enter the composition of magnetite in one of these 2 equivalent ways:
 - FE(3)O(4) * Equivalent to 1 FeO + 2 FeO_{1.5}
 - FE(3)O(?) O(1) * Results in 3 FeO + 1 O == 1 FeO + 2 FeO_{1.5}

The O(?) tells the program to calculate the O required to form the default set of oxides from the given elements; see database header

3. Program installation/startup problems

Programs from the official distribution site require additional linked libraries (gcc)

- Install those libraries separately (can be difficult on Windows), or
- Download from alternate sites, where programs are not dependent on additional libraries

٠

Usage Pitfalls & Pointers: more advice

- 4. Take advantage of the *** SEEDS *** feature in the database
 - SEEDS are equilibrium compositions of phases at a fixed diagram coordinate (P-T, T-X, etc.). The output for seeds are listed in the log file of program Theriak (and on screen) when you specify extra output (put a 1 in front of your bulk system composition)
 - If you are generating a diagram in Domino, run Theriak at the corners and in a few interior points of the diagram; place each SEED that is generated towards the bottom of the database file (I delete old SEEDS that are already present)
 - SEEDS are generally not required, but they can decrease computation time and generally reduce the number of failed minimizations (don't add too many; 6-15 SEEDS entries generally helps)

THERMOCALC and Domino Equilibrium Assemblage Diagrams

You will get the same results IF you use the exactly the same database, solution models, and bulk system composition

Both have their strong and weak points. Why not use both?

Bibliography

Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na₂O-K₂O-CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂. *Journal of Petrology* **29**, 445-522.

de Capitani, C. & Brown, T. H. (1987). The computation of chemical equilibrium in complex systems containing non-ideal solutions. *Geochimica et Cosmochimica Acta* **51**, 2639-2652. de Capitani, C. & Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. *American Mineralogist* **95**, 1006-1016.

Diener, J. F. A., Powell, R., White, R. W. & Holland, T. J. B. (2007). A new thermodynamic model for clino- and orthoamphiboles in the system Na₂O-CaO-FeO-MgO-Al₂O₃-SiO₂ -H₂O-O. *Journal of Metamorphic Geology* **25**, 631–656.

Diener, J. F. A. & Powell, R. (2012). Revised activity-composition models for clinopyroxene and amphibole. *Journal of Metamorphic Geology* **30**, 131–142.

Duesterhoeft, E. & De Capitani, C. (2013). THERIAK-D: An add-on to implement equilibrium computations in geodynamic models. *Geochemistry, Geophysics, Geosystems* 14, 4962-4967.

Duesterhoeft, E. & Lanari, P. (2020). Iterative thermodynamic modelling; Part 1, A theoretical scoring technique and a computer program (Bingo-Antidote). *Journal of Metamorphic Geology* **38**, 527-551.

Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B. & Palin, R. M. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. *Journal of Metamorphic Geology* **34**, 845-869.

Holland, T. J. B. & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309-343.

Holland, T. & Powell, R. (2003). Activity-composition relations for phases in petrological calculations; an asymmetric multicomponent formulation. *Contributions to Mineralogy and Petrology* **145**, 492-501.

Holland, T. J. B. & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, **29**, 333–383.

Jorgensen, T. R. C., Tinkham, D. K. & Lesher, C. M. (2019). Low-P and high-T metamorphism of basalts: Insights from the Sudbury impact melt sheet aureole and thermodynamic modelling. *Journal of Metamorphic Geology* **37**, 271-313.

Tinkham, D. K., Zuluaga, C. A. & Stowell, H. H. (2001). Metapelite phase equilibria modeling in MnNCKFMASH; the effect of variable Al₂O₃ and MgO/(MgO+FeO) on mineral stability. *Geological Materials Research* **3**.

Vho, A., Lanari, P., Rubatto, D. & Hermann, J. (2020). Tracing fluid transfers in subduction zones: An integrated thermodynamic and 180 fractionation modelling approach. *Solid Earth* **11**, 307-328.

White, R. W., Powell, R. & Johnson, T. E. (2014). The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. *Journal of Metamorphic Geology* **32**, 809–828.

Bibliography

White, R. W., Powell, R. & Holland, T. J. B. (2007). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511-527.

White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E. & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. *Journal of Metamorphic Geology* **32**, 261-286.

White, R. W., Powell, R., Holland, T. J. B. & Worley, B. A. (2000). The effect of TiO₂ and Fe₂O₃ on metapelitic assemblages at greenschist and amphibolite facies conditions; mineral equilibria calculations in the system K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O-TiO₂-Fe₂O₃. *Journal of Metamorphic Geology* **18**, 497-511.

PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

Program Domino – pixel maps

- Biotite composition and abundance maps
- Production automated using simple Mathematica script

Program Domino pixel maps: AWBZ system properties

-9.03842 * 107

-9.53604 × 10⁷

-9.1×10⁷

 -9.2×10^{7}

 -9.3×10^{7}

 -9.4×10^{7}

-9.5×10⁷

TS_tot

AWBZ: Al pfu maps

AWBZ: : proportion Mn phase components

AWBZ: Biotite composition and abundance maps

Min:

1.7

1.6

1.5 1.4

1.3 1.2

1.1

450

500

550

Temperature (°C)

600

700

0.008

0.006

0.004

0.002

AWBZ: Garnet composition and abundance maps

x_spss_[GRT]

0.4

0.3

0.2

0.1

Max:

Min:

2.93457

2.5

2.0

1.5

1.0

0.5

4.4109 + 10-7

AWBZ: Chlorite composition and abundance maps

0.0125

0.0100

0.0075

0.0050

0.0025

n_[CHL]

550

600

650

700

Holland & Powell (2003) ternary feldspar

Plagioclase binary

- When using THERMOCALC, you can manually change between the PIC and PII model depending on T and feldspar composition
- The PII model is more stable than the PIC model when plagioclase compositions indicate you should be using PIC; this is a severe problem for the G minimizers because they always find the phase with the lowest G

