

# THERMOCALC

&

average P-T

**Dave Waters** University of Oxford, UK





### **Introduction to THERMOCALC**

Origins and landmarks ...

PHASE EQUILIBRIUM MODELLING:

**APPROACHES AND PITFALLS** 

- Roger Powell doctoral thesis 1973, suite of FORTRAN programs on University mainframe.
- Holland & Powell 1985 1990: internally consistent thermodynamic datasets
- THERMOCALC release 1988, calculating reactions, average *P-T*, uncertainties
- Pseudosections: DS4, 1990; DS5, 1998
   Powell, Holland & Worley 1998, Calculating phase diagrams
- THERMOCALC v3.0 onwards, 2001; Improved functionality, DRAWPD, melt models, etc.
- Dataset 6, Holland & Powell 2011; major revision
- Expanded solution models, for metapelitic and metabasic systems, 2014 onwards
- THERMOCALC v3.50: current version, with enhancements and changes to file formats and scripting

#### Interacting with THERMOCALC through the ages:





1988: TC v.2



2021: TC v.3.50



### **Information about THERMOCALC**

THERMOCALC program is intimately linked to the Holland & Powell datasets and solution models.

- Website: <u>https://hpxeosandthermocalc.org/</u>
- Discussion: <u>https://groups.io/g/hpxeosandthermocalc</u>

These sites describe and discuss the current versions and best practice.

Source code is not available

Some users still deploy older versions, datasets and models

- Legacy materials:
  - Official website was at University of Mainz, Germany
  - Documentation from various workshops (2001, 2006, 2009)

Useful links to older information and archived documents: https://serc.carleton.edu/research\_education/equilibria/index.html https://serc.carleton.edu/research\_education/equilibria/thermocalc.html http://serc.carleton.edu/files/research\_education/equilibria/thermocalc\_16.pdf

#### https://hpxeosandthermocalc.org/



#### https://serc.carleton.edu/research\_education/equilibria/thermocalc.html



Cretaceous Julie Baldwin, University of Montana; Dexter Perkins, University of North Dakota; and Dave Mogk, Montana Crystallography State University



# How does it work?

- Algebraic, non-linear equation solver
  - Requires starting guesses for key composition variables
- Principle: from viewpoint of phase diagram construction ...
  - Free-energy minimization: boundaries interpolated
  - THERMOCALC: boundaries calculated directly
- Method: Calculates individual equilibria of specified variance
  - Focus is on lines and points, e.g. assemblage field boundaries, univariant reactions, invariant intersections
  - Build up diagram incrementally, with many short program runs.
- THERMOCALC has three PTX calculation modes:
  - 1. Phase diagram calculations
  - 2. Rock calculations average *P*-*T*
  - 3. Calculate all reactions in a system



#### Partially completed metapelite P-T diagram, lines and fields ...

### **THERMOCALC** in mode 1: How does it work in practice?

#### THERMOCALC has three *PTX* calculation modes:

- 1. Phase diagram calculations
- 2. Rock calculations average *P*-*T*
- 3. Calculate all reactions in a system
- THERMOCALC in mode 1
- Input files:
  - 'prefs' file sets project name, database, ...
  - 'axfile' solution models
  - 'scriptfile' data input, operating commands, etc.
- Interface: console, interactive
  - Question & answer style, but increasingly automatable via scripts
- Output files see next and later slides

# Screenshot: starting a run with tc350 ... C:\Users\davew\OneDrive\Documents\dwwork\Thermo\tc350-work\tc350beta.exe THERMOCALC 3.50 (Free Pascal version)

summary output in the file, "tc-me148-o.txt"
other (eg drawpd) output in the file, "tc-me148-dr.txt"
details of calc results in the file, "tc-me148-ic.txt"
initial tables in the file, "tc-me148-it.txt"
csv format in the file, "tc-me1482.csv"
more csv format in the file, "tc-me1482.csv"
(these files may not all be populated yet, depending on the calcs;
thermocalc should delete empty files at the end of each run)

```
THERMOCALC 3.50 running at 16.18 on Sun 11 Apr,2021
using tc-ds62.txt produced at 20.08 on Mon 6 Feb,2012
with axfile tc-mp50MnNCKFMASHTO.txt and scriptfile tc-me148.txt
```

reading ax: g liq plc ksp ep ma mu bi opx sa cd st chl ctd sp ilmm ilm mt1 ksp0 heme mt0 ilm0 ab Ni NiO ru sill and ky q H2O abh sph cz ta

```
with someof: g pl ep ma mu pa bi st chl ilmm sill and q H2O (from script)
inexcess: mu ilmm q H2O - auto included (from script)
tozero: H2O (from script)
choose phases : g pl bi chl
fluid is just H2O
in excess: mu ilmm q H2O
```

specification of xyz starting guesses of phases in the scriptfile: g pl mu bi chl ilmm; not in the scriptfile: none

specification of overall PT window: overall PT window is P: 3.0 to 7.0 kbar, and T: 450 to 650íC (from script)

accepting the calculated variance (from script)

specification of mode isopleths you may set zero modal proportions, from: g pl mu bi chl ilmm q H2O which to set : g mode of g set to zero

```
original variance = 5, effective variance = 1 (1, 0)
calculate T at P (rather than P at T) ?
```

specification of PT calcs: P at which T of reactions to be calculated P calcs: between P(low) and P(high), with P increment :



#### **THERMOCALC** output files

Basic output text files, prefix 'tc-'

- tc-log almost everything that you see on screen, with your interactive input
- Suffix '-o' the results of calculations a subset of what appeared on the screen, minus the interaction
- Suffix '-dr' a file for use, after editing, with the graphics accessory program DRAWPD

TC350 introduces further output:

PHASE EQUILIBRIUM MODELLING:

- '-it' solution model coding for phases used in the calculations
- '-ic' full listing, for each individual calculation, of phase compositions and proportions, site fractions, thermodynamic properties of phases and end members (see later)

Example of '-o' output file for an assemblage field corner ...

THERMOCALC 3.50 running at 13.53 on Sat 27 Mar, 2021 using tc-ds62.txt produced at 20.08 on Mon 6 Feb,2012 with axfile tc-mp50MnNCKFMASHTO.txt and scriptfile tc-me148.txt

| fluid : | is jus                         | st H2O  |          |             |        |         |       |       |  |  |  |  |  |  |
|---------|--------------------------------|---------|----------|-------------|--------|---------|-------|-------|--|--|--|--|--|--|
| composi | composition (from bulk script) |         |          |             |        |         |       |       |  |  |  |  |  |  |
| ŀ       | 120                            | SiO2    | A1203    | Ca0         | MgO    | Fe0     | K20   | Na20  |  |  |  |  |  |  |
| 20.0    | 900                            | 49.859  | 12.756   | 2.958       | 3.541  | 5.361   | 2.558 | 1.992 |  |  |  |  |  |  |
| <=====  |                                |         |          |             |        |         | =>    |       |  |  |  |  |  |  |
| phases  | ; g p                          | l ma bi | st chl i | Lmm (mu, q, | fluid) |         |       |       |  |  |  |  |  |  |
|         |                                |         |          |             |        |         |       |       |  |  |  |  |  |  |
| P(kbaı  | r)                             | T(¡C)   | x(g)     | ) z(g)      | m(g)   | f(g)    | ca(p  | 1)    |  |  |  |  |  |  |
| 4.82    | 23                             | 565.70  | 0.860    | 5 0.08082   | 0.1817 | 0.02022 | 0.40  | əo    |  |  |  |  |  |  |
|         |                                |         | y(mu)    | ) f(mu)     | n(mu)  | c(mu)   | x(b)  | i)    |  |  |  |  |  |  |
|         |                                |         | 0.9755   | 5 0.005148  | 0.2887 | 0.02197 | 0.55  | 86    |  |  |  |  |  |  |
|         |                                |         | f(st)    | ) t(st)     | x(chl) | y(chl)  | f(ch  | 1)    |  |  |  |  |  |  |
|         |                                |         | 0.07028  | 3 0.04023   | 0.4449 | 0.6682  | 0.16  | 38    |  |  |  |  |  |  |
|         |                                |         |          |             |        |         |       |       |  |  |  |  |  |  |
| mode    |                                | g       | pl       | ma          | mu     | bi      | st    | chl   |  |  |  |  |  |  |
|         | 0.008                          | 8139    | 0.1928   | 0.09345     | 0.2020 | 0.2081  |       |       |  |  |  |  |  |  |
|         | 0.00                           | 9280    | 0.2198   | 0.1065      | 0.2303 | 0.2372  |       |       |  |  |  |  |  |  |
| ^^^^    | ~~~~                           | ~~~~~   | ~~~~~    | ~~~~~       | ~~~~~  | ^^^^^   |       |       |  |  |  |  |  |  |



#### **Database and solution models**

- Holland & Powell databases
  - DS5 latest main revision Sept 2004
  - DS6 released 2011, major changes from DS5
- Solution models
  - Now re-branded as HPx-eos
  - Exist as packages of internally consistent models, cannot be mixed or modified without possibly compromising the database
  - Each solution phase described by an independent set of 'xyz' composition parameters

#### Example (garnet) of how models are coded

Macroscopic end members (5) are pyrope, almandine, spessartine, grossular, khohorite (MgFe<sup>3+</sup>)

```
'xyz' definitions (4):
    x(g) = xFeX/(xFeX + xMgX)
    z(g) = xCaX
    m(g) = xMnX
    f(g) = xFe3Y
```

Coding for proportion of pyrope in garnet:

| р(ру) | 31 | 1 | 4 | -1 | f | -1 | m | -1 | х | -1 | z |
|-------|----|---|---|----|---|----|---|----|---|----|---|
|       | 2  | 0 | 1 | 1  | m | 0  | 1 | 1  | х |    |   |
|       | 2  | 0 | 1 | 1  | х | 0  | 1 | 1  | z |    |   |

Coding for occupancy of Mg in X site:

| xMgX | 31 | 1 | 3 | -1 | m | -1 | х | -1 | Z |
|------|----|---|---|----|---|----|---|----|---|
|      | 2  | 0 | 1 | 1  | m | 0  | 1 | 1  | Х |
|      | 2  | 0 | 1 | 1  | х | 0  | 1 | 1  | z |

Coding for thermodynamic mole fraction of pyrope in garnet:

py 1 2 xMgX 3 xAlY 2



## **Propagation of uncertainties**

- Propagation of uncertainties
  - Was built in from the outset, based on leastsquares regression of fundamental dataset enthalpies, together with their covariances (Powell & Holland, 1985)
  - Generalised procedure for estimating uncertainties on activities from solution model parameters (Powell et al. 1988; Powell & Holland 2008)
  - This uncertainty is also applied to average P-T thermobarometry (see later)
  - Authors are concerned that uncertainties should not be underestimated.
- More on this in the Uncertainties & Best Practice session

#### Examples of how these are presented in output

[Is not present by default ... Switched on using the script 'calcsdnle yes' I recommend that you do this]

At invariant point (ma,st) in ME148 metapelite

For P, T and composition parameters:

|    | P(kbar) | T(°C)  | x(g)    | z(g)    | m(g)   | f(g)    | ••• |
|----|---------|--------|---------|---------|--------|---------|-----|
|    | 3.676   | 549.07 | 0.8753  | 0.07280 | 0.2433 | 0.01708 | ••• |
| sd | 0.6     | 13     | 0.00535 | 0.00805 | 0.0475 | 0.00262 | ••• |

... and for modal proportions:

| Mod | e g      | pl      | ma      | mu      | bi      | st      | •••   |
|-----|----------|---------|---------|---------|---------|---------|-------|
|     | 0.004553 | 0.2831  | -       | 0.2936  | 0.1693  | -       | •••   |
| sd  | 0.00142  | 0.00127 | 0.00242 | 0.00385 | 0.00174 | 6.14e-5 | • • • |



# **Calculation types, diagrams**

- *P-T* projections (petrogenetic grids)
- Phase diagram (pseudosection) calculations: bulk composition(s) required; includes all variations of *P-T-X* diagram type
- Data for modeboxes (in tc350)
- Compatibility diagrams (composition projections)
  - Is described in older documentation
  - New features for tc350 (Simon Schorn tutorial, see download link on 'compatibility diagrams' website page)
- Free energy minimization (dogmin)

PHASE EQUILIBRIUM MODELLING:

**APPROACHES AND PITFALLS** 



#### Examples: 'modebox' and compatibility diagrams

# **P-T** projection

- Shows all stable reaction curves and invariants, regardless of bulk composition
- Helpful for simple systems
- Gets very complex for large systems

Example: Classic KFMASH metapelite grid, from old THERMOCALC documentation.

- Diagram consists of linked bundles of stable reaction curves arranged according to Schreinemakers' rules
- Note some curves terminate in simpler end-member systems

As for all applications of THERMOCALC, the user must be familiar with the geometrical properties of phase diagrams, e.g., Schreinemakers' rules





### **P-T** isochemical phase diagram (pseudosection)

- Script instruction 'pseudosection' calculates relevant information
- Bulk composition entered as oxides, in a specified order.
   Compositions are always normalised to 100 oxide units
- Calculates sections of curves that are 'seen' by the rock composition,
   i.e., all calculated phase modes are positive or zero
- Geometrical rules for assemblage fields
  - Note changes in no. of phases and assemblage variance
  - Note metastable extensions of high-variance boundaries
  - A univariant curve behaves like an infinitely narrow field with 2 sides







### **P-T** phase diagram construction (1)

How to start with 'dogmin' – have you included all likely phases? Trade-off between inclusion and long calculation time

- Choose one or more isobaric and isothermal traverses across PT box. THERMOCALC cycles through all combinations of phases, from variance 2 to the specified max variance. Identifies lowest G at each PT point. Output as below.
- Run at a single *PT* point gives further detail, listing equilibria in order of increasing *G*.

| <b>Output from isobaric</b> | 'dogmin' run, | allowing identification ( | of some assemblage boundaries - | <ul> <li>choose your starting posi</li> </ul> | ition for the diagram! |
|-----------------------------|---------------|---------------------------|---------------------------------|-----------------------------------------------|------------------------|
|                             |               |                           |                                 |                                               |                        |

| P(kbar) | T(¡C)  | g | pl | ер | ma | bi | st | chl | ilmm | sill | G          | del     | n  | #   |
|---------|--------|---|----|----|----|----|----|-----|------|------|------------|---------|----|-----|
| 5.000   | 450.00 | • | Х  | Х  |    | Х  |    | Х   | Х    |      | -868.36956 | 0.02212 | 18 | 189 |
| 5.000   | 460.00 | • | Х  | Х  |    | Х  |    | Х   | Х    |      | -869.41418 | 0.02345 | 17 | 189 |
| 5.000   | 470.00 | • | Х  | Х  |    | Х  | •  | Х   | Х    |      | -870.47026 | 0.02419 | 17 | 189 |
| 5.000   | 480.00 | • | Х  | Х  |    | Х  | •  | Х   | Х    |      | -871.53807 | 0.02558 | 18 | 189 |
| 5.000   | 490.00 | Х | Х  | Х  |    | Х  | •  | Х   | Х    |      | -872.61798 | 0.00000 | 19 | 244 |
| 5.000   | 500.00 | Х | Х  | Х  |    | Х  | •  | Х   | Х    |      | -873.71051 | 0.00005 | 23 | 244 |
| 5.000   | 510.00 | Х | Х  | Х  |    | Х  |    | Х   | Х    |      | -874.81623 | 0.00018 | 22 | 244 |
| 5.000   | 520.00 | Х | Х  | Х  | Х  | Х  | •  | Х   | Х    |      | -875.93592 | 0.00005 | 22 | 318 |
| 5.000   | 530.00 | Х | Х  | •  | Х  | Х  | •  | Х   | Х    |      | -877.07009 | 0.00049 | 20 | 254 |
| 5.000   | 540.00 | Х | Х  |    | Х  | Х  |    | Х   | Х    | •    | -878.21466 | 0.00077 | 16 | 254 |
| 5.000   | 550.00 | Х | Х  |    | Х  | Х  |    | Х   | Х    |      | -879.36953 | 0.00062 | 15 | 254 |
| 5.000   | 560.00 | Х | Х  |    | Х  | Х  |    | Х   | Х    |      | -880.53468 | 0.00003 | 15 | 254 |
| 5.000   | 570.00 | Х | Х  |    | Х  | Х  | Х  |     | Х    |      | -881.70998 | 0.00001 | 18 | 252 |
| 5.000   | 580.00 | Х | Х  |    |    | Х  | Х  |     | Х    |      | -882.89949 | 0.00115 | 13 | 134 |
| 5.000   | 590.00 | Х | Х  |    |    | Х  | Х  | •   | Х    |      | -884.10201 | 0.00093 | 13 | 134 |
| 5.000   | 600.00 | Х | Х  | •  | •  | Х  | Х  | •   | Х    | •    | -885.31376 | 0.00075 | 14 | 134 |
| 5.000   | 610.00 | Х | Х  |    |    | Х  | Х  | •   | Х    |      | -886.53457 | 0.00062 | 13 | 134 |
| 5.000   | 620.00 | Х | Х  |    | •  | Х  | •  | •   | Х    | Х    | -887.76776 | 0.00155 | 13 | 138 |
| 5.000   | 630.00 | Х | Х  |    | •  | Х  | •  | •   | Х    | Х    | -889.01115 | 0.00107 | 12 | 138 |
| 5.000   | 640.00 | Х | Х  | •  | •  | Х  | •  | •   | Х    | Х    | -890.26353 | 0.00069 | 11 | 138 |
| 5.000   | 650.00 | Х | Х  |    | •  | Х  | •  |     | Х    | Х    | -891.52478 | 0.00041 | 11 | 138 |

A promising area to start work?  $\rightarrow$ 



# **P-T** phase diagram construction (2)

- Start from convenient low-variance field, bounded by invariant points (two modes = zero)
- Work outwards along univariant lines (mode of phase = 0), from first invariant points
- Sketch developments with pencil & paper, or paste interim results into a spreadsheet
- Be alert to appearance of new phases consult *dogmin* run results, or study similar diagrams
- Modify starting guesses as required (paste in output from suitable P,T):

| % at P = 4.8, T = %                                                   | 566, for: g                            | pl ma                | mu bi | st | chl | ilmm | q | •• |
|-----------------------------------------------------------------------|----------------------------------------|----------------------|-------|----|-----|------|---|----|
| ptguess 4.823 565.                                                    | 70                                     |                      |       |    |     |      |   |    |
| xyzguess x(g)<br>xyzguess z(g)<br>xyzguess m(g)<br>xyzguess f(g)<br>% | 0.8605<br>0.08081<br>0.1816<br>0.02021 | 28<br>71<br>70<br>80 |       |    |     |      |   |    |
| xyzguess ca(pl)<br>xyzguess k(pl)                                     | 0.4000<br>0.003624                     | 09<br>63             |       |    |     |      |   |    |

drawpd 1.18 (running at 2.00 on Sun 28 Mar, 2021)





<sup>1214</sup> g bi ma Epidote-bearing 6 15 assemblages 5 a bi ma chl Staurolite-bearing assemblages Started here 4 g bi chl bi chl All + Ms, Pl, Ilm, QZ, H20 450 500 550 600 650

# T-X (or P-X) phase diagram (1)

- Where X is fluid composition, e.g., H<sub>2</sub>O CO<sub>2</sub>
  - Calculations performed at specified increments along the X axis
- Other examples
  - T-X(Mg) see next slide
  - T-X(Fe<sup>3+</sup>) varying oxidation state of Fe
  - T-*M*(H<sub>2</sub>O) varying moles of H<sub>2</sub>O
  - T-X(melt) varying proportion of melt
     Last three may be discussed in other sessions,

e.g., Friday's topics





# *T-X* (or *P-X*) phase diagram (2)

Where X is a composition variable, e.g., Mg/(Mg+Fe)

- Useful for overview of a system with ferromagnesian phases
- Calculations are made at discrete values of the X-axis
- Not guite so simple to locate invariant points in these cases – requires interpolation

#### T–XMg diagram, metapelite in KFMASH (Powell et al. 1998)





### **Isopleth calculations**

... for composition parameters and for modes

- Each isopleth is treated as a univariant curve
- Each assemblage field must be treated in turn

For 'xyz' composition parameters:

- Use script 'isopleth' ['setiso' prior to tc350]
- Choose parameter from list
- Set range of values and interval
- Intersection between isopleth and a field boundary can be determined by setting, in addition, the relevant phase to zero mode.

Calculating isopleths and organizing data output can be labour-intensive, but for narrow fields, just join matching points on boundaries.

Note that you cannot contour derived parameters, such as X(prp) in a garnet formulated with x(g), z(g) and f(g)





**APPROACHES AND PITFALLS** 

# Mode isopleth calculations

- Modes have idiosyncratic units (1-oxide-molar basis), but can be converted to volumes using density or molar volume data
- Mode contouring in THERMOCALC has other issues, including counterintuitive scripting, and normalization effects
  - The "H<sub>2</sub>O effect":

If the calculated assemblages include an  $H_2O$  phase, either with moles  $H_2O$  specified, or (prior to tc350) not specified but in excess, the mode of  $H_2O$  is included in the total, but the results are, or can be (tc350), normalized to exclude the  $H_2O$  mode.

When a mode contour is set, its value relates to the total system, not just the solid phases.

In such cases, the normalized result gives a mode value higher than the input one, by a factor that depends on the amount of free  $H_2O$ .

Mode contours give a useful impression of the volume distribution across fields, but they are **not volume modes**, and **do not always correspond to input contour values**.

See later for TCInvestigator, a partial solution





#### Phase compositions and other parameters

- Determining full phase compositions you can use ...
  - The 'xyz' parameters in the standard output contain this information, but not necessarily in a convenient form
  - The 'rbi' matrix contains molar information for bulk composition and all relevant phases, more easily converted into mineral formula units (cations)
- Other parameters:
  - Calculation method is not suited to determining all physical parameters of the rock
    - Densities of mineral phases are now (tc350) part of the output in the '-ic' file

#### The RBI matrix (for metapelite ME148 at staurolite isograd, tc350 format)

| rbi   |      |          | H20      | SiO2     | A1203    | Ca0      | MgO      | FeOt     | K20      | Na2O     | Ti02     | MnO      | 0        |
|-------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| rbi   | g    | 0.008139 | 0        | 3.000000 | 0.979782 | 0.242451 | 0.308587 | 1.944387 | 0        | 0        | 0        | 0.545011 | 0.020218 |
| rbi   | pl   | 0.192818 | 0        | 2.599991 | 0.700004 | 0.400009 | 0        | 0        | 0.001812 | 0.298183 | 0        | 0        | 0        |
| rbi   | ma   | 0.093446 | 1        | 2.297133 | 1.839747 | 0.720493 | 0.009947 | 0.013426 | 0.015678 | 0.124075 | 0        | 0        | 0.002873 |
| rbi   | mu   | 0.201978 | 1        | 3.002556 | 1.483884 | 0.021971 | 0.013841 | 0.015834 | 0.344657 | 0.144357 | 0        | 0        | 0.002574 |
| rbi   | bi   | 0.208071 | 0.928735 | 2.649310 | 0.788695 | 0        | 1.153298 | 1.538005 | 0.500000 | 0        | 0.071265 | 0.010731 | 0.061995 |
| rbi   | st   | 0        | 2        | 7.500000 | 8.876082 | 0        | 0.750352 | 3.294475 | 0        | 0        | 0.080463 | 0.095725 | 0.070276 |
| rbi   | chl  | 0        | 4        | 2.499688 | 1.418400 | 0        | 2.484688 | 2.155444 | 0        | 0        | 0        | 0.023381 | 0.081912 |
| rbi   | ilmm | 0.007116 | 0        | 0        | 0        | 0        | 0.020844 | 1.040508 | 0        | 0        | 0.903662 | 0.034986 | 0.096338 |
| rbi   | q    | 0.165495 | 0        | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| rbi   | H20  | 0.122937 | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| %     |      |          |          |          |          |          |          |          |          |          |          |          |          |
| % bu] | lk   |          | 20.0002  | 49.8595  | 12.7561  | 2.9580   | 3.5410   | 5.3611   | 2.5580   | 1.9920   | 0.6150   | 0.1170   | 0.2420   |



#### **Extended output from tc350 – the '-ic' file**

New for tc350: Full data summary for each calculation

In a series of data blocks, lists:

- Values for 'xyz' phase composition variables
- Site fractions for elements in each phase
- Compositions in oxide units for the bulk and each phase, plus the molar 'mode' of each phase (not normalized for H<sub>2</sub>O)
- Thermodynamic quantities (G, H, S, V) and density for each phase, and for the bulk system
- Activity details for each end member in each phase, including standard state chemical potential (μ<sub>0</sub>) and *RT*In*a* value

Roughly equivalent to Theriak's 'Thkout' output file, and to Perple\_X output

Excerpts (for Grt and PI) from tabulated results in '-ic' file for metapelite ME148 at c. 4.8 kbar on staurolite isograd

| g   |       | x(g)                     | z(g)     | m(g)       | f(g)       |           |           |      |
|-----|-------|--------------------------|----------|------------|------------|-----------|-----------|------|
|     |       | 0.86053                  | 0.08082  | 0.18167    | 0.02022    |           |           |      |
| pl  |       | ca(pl)                   | k(pl)    |            |            |           |           |      |
| •   |       | 0.40001                  | 0.00362  |            |            |           |           |      |
| si  | te fr | ractions                 |          |            |            |           |           |      |
| g   |       | xMgX                     | xFeX     | xMnX       | xCaX       | xAlY      | xFe3Y     | ,    |
|     |       | 0.10286                  | 0.63465  | 0.18167    | 0.08082    | 0.97978   | 0.02022   | -    |
| pl  |       | x(K)                     | x(Na)    | x(Ca)      |            |           |           |      |
|     |       | 0.00362                  | 0.59637  | 0.40001    |            |           |           |      |
| [RI | BI ma | atrix (omit <sup>.</sup> | ted)]    |            |            |           |           |      |
| [T] | hermo | data] G                  |          | Н          | S          | V         | rho       |      |
| g   |       | -5910.5622               | -5243.19 | 0.79       | 956 11.7   | 7755      | 4.11683   |      |
| pl  |       | -4261.5988               | -3847.88 | 0.49       | 932 10.1   | 4700      | 2.64772   |      |
| sy  | s     | -881.60009               | -782.887 | /81 0.11   | 1768 2.2   | 4290      | 2.57523   |      |
|     |       |                          |          |            |            |           |           |      |
|     |       | ideal                    | . gamma  | activit    | y pro      | р         | μ0 RT     | ln a |
| g   | ру    | 0.00104479               | 1.75248  | 0.0018309  | 0.08264    | 4 -6581.3 | 3188 -43. | 9599 |
|     | alm   | 0.245393                 | 1.04533  | 0.25651    | .7 0.6346  | 5 -5625.5 | 5352 -9.  | 4893 |
|     | spss  | 0.00575586               | 1.10111  | 0.0063378  | 0.1816     | 7 -6049.2 | 2824 -35. | 2997 |
|     | gr    | 0.000506721              | 1.76420  | 0.00089395 | 9 0.08081  | 7 -6925.6 | 5331 -48. | 9603 |
|     | kho   | 4.44885e-7               | 8.59033  | 3.82171e-  | 6 0.02021  | 8 -5734.3 | 3620 -87. | 0061 |
| pl  | abh   | 0.596367                 | 1.09059  | 0.65039    | 0.5963     | 7 -4141.1 | 1122 -3.  | 0003 |
|     | anC   | 0.400009                 | 1.14534  | 0.45814    | 5 0.4000   | 1 -4431.9 | 9860 -5.  | 4441 |
|     | san   | 0.00362463               | 71.0053  | 0.25736    | 8 0.003624 | 6 -4177.8 | 3837 -9.  | 4662 |
|     |       |                          |          |            |            |           |           |      |



### **Fractionation calculations**

- Not wholly straightforward:
  - Requires stepwise manual adjustment of bulk composition guided by 'rbi' output of previous run

L429 Donara nappe

% Alm

Mol

5

4

6

- Watch out for changes in mineral assemblage
- Example: *P-T* path from zoned garnet, shows five fractionation steps based on intersections of pyrope & grossular isopleths, superimposed on *P-T* phase diagram for the total bulk composition
- More functionality promised in the longer term (see website)

සි 20 ය ය

sdS % 10 10





### The 'modebox': plotting phase proportions

- Mode data always generated in 'pseudosection' calculations
- TC350 has a new script for organizing the data
- Needs auxiliary program to plot
   [some THERMOCALC output is designed to be readable by Mathematica<sup>®</sup>]
- Can do this manually, collect results, make preliminary plot in a spreadsheet program (e.g. MS-Excel), convert to filled chart in a graphics app.







# **Output: DRAWPD**

 Supplementary program DRAWPD (draw.exe or dr11x.exe) takes output from THERMOCALC (-dr) file

Link: <u>https://hpxeosandthermocalc.org/downloads/download-</u> <u>drawpd-software/</u>

- Template dr-file is provided
- Input data requires some editing
- DRAWPD features:
  - Can define assemblage fields, recommends colouring according to variance
  - Optional: title, numbering of points and curves
  - Does not label axes
- Output as .eps file, editable in a vector graphics program, add axis labels etc., customize





# **Other auxiliary programs**

- AX software by Tim Holland
  - Calculates activities for end members from primary analytical data, for use in average P-T calculations
  - Uses, or approximates, the then-current solution models
  - With TC v.3.50, users encouraged to use the HPx-eos rather than AX

#### TCInvestigator

- By Mark Pearce & others (CSIRO, Australia)
- Use with TC v.3.4
- Contours a completed phase diagram (pseudosection) for all parameters
- Grids the actual (normalized) output results (i.e., avoids the "H<sub>2</sub>O effect" for modes)





550

Temperature (°C)

500





#### **TCInvestigator plots for Grt in Mt Everest metapelite ME148**

### Mode 2: Thermobarometry – "average P-T"

- Average P-T, the inverse approach, was the primary purpose and major application of THERMOCALC up to later 1990s
- Principles: optimal geothermobarometry (Powell & Holland 1994)
  - Use all compositional information in the assemblage
  - Find independent set of equilibria among end members
  - Find weighted best-fit *P*-*T* result with uncertainty ellipse



#### Example: Himalayan *P-T* conditions south of Mt Everest, across

the 'inverted metamorphic sequence'

(data from Searle et al. 2003, figure from Waters 2019)



# Average P example (1) - getting started

#### This is THERMOCALC in *mode 2*

- Setting up the problem: Average P, average T, or average P-T?
- Selection of end member activities:
   (1) use AX (or another external *a-X* model), or
   (2) use HPx-eos (coded solution models matched to HP dataset)
- Running the program: 3 input files ...
  - 'tc-prefs' file pointing to the script and dataset files
  - Script file containing name of the axfile, plus other scripts. If using method (2), supply 'xyz' composition variables for solid solution minerals
  - 'axfile' with either (method 1) activities of all relevant mineral end members, or (method 2) solution models for the activity calculations

#### Using tc350 with the coded solution models:-

Mt Everest garnet-zone metapelite L8 (Jessup et al. 2008) 'xyz' variables converted to activities: garnet example

| •                |                                                                                              |                                                                                                                         | •                                                                       | •      |
|------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------|
| variable         | value                                                                                        | endmem                                                                                                                  | activity                                                                | sd(a)  |
| x(g)             | 0.866                                                                                        | alm                                                                                                                     | 0.5249                                                                  | 0.0343 |
|                  |                                                                                              | ру                                                                                                                      | 0.0033                                                                  | 0.0020 |
| z(g)             | 0.064                                                                                        | gr                                                                                                                      | 0.0008                                                                  | 0.0012 |
|                  | <pre>Independent 1) mu + 2ph 2) 2east + 3) mu + 2an 4) 3anC + p 5) 3anC + a 6) 3fcel +</pre> | <b>set of react</b><br>1 + 6q = py +<br>6q = py + mu<br>nm + 6q = alm<br>hl = py + gr<br>nnm = alm + g<br>4pa = alm + 4 | ions<br>+ 3cel<br>+ cel<br>n + 3fcel<br>+ mu<br>gr + mu<br>4abh + 3mu + | 4H2O   |
| Results (average | e <i>P</i> )                                                                                 |                                                                                                                         |                                                                         |        |

| Τ¡C    | 450  | 475  | 500  | 525  | 550  | 575  | 600  | 625  | 650  |
|--------|------|------|------|------|------|------|------|------|------|
| av P   | 5.26 | 5.46 | 5.65 | 5.83 | 6.01 | 6.18 | 6.34 | 6.49 | 6.62 |
| sd     | 1.59 | 1.50 | 1.44 | 1.38 | 1.35 | 1.34 | 1.34 | 1.37 | 1.41 |
| sigfit | 2.07 | 1.96 | 1.87 | 1.80 | 1.75 | 1.74 | 1.75 | 1.78 | 1.85 |

Independent T estimate (Grt-Bt, Ti-in-Bt) is 560 – 580°C



#### Average *P* example (2) - diagnostics

#### Diagnostics (doubling uncertainty on activity) for first run with Everest metapelite L8

|      | Р      | sd    | sigfit | e*     | hat   | a(obs)  | ) a(e | calc) | e*     | hat   |
|------|--------|-------|--------|--------|-------|---------|-------|-------|--------|-------|
| ру   | 6.00   | 2.09  | 3.396  | 0.582  | 0.011 | 0.0033  | 5 0.0 | 00484 | 0.323  | 0.000 |
| alm  | 5.92   | 2.05  | 3.334  | -0.937 | 0.001 | 0.524   | 4 (   | 0.492 | -1.000 | 0.002 |
| gr   | 6.14   | 2.20  | 3.386  | 0.849  | 0.149 | 0.00087 | 7 0.0 | 00331 | -0.023 | 0.000 |
| abh  | 6.27   | 2.08  | 3.297  | -1.209 | 0.027 | 0.619   | э (   | 0.577 | -0.390 | 0.006 |
| anC  | 5.98   | 2.09  | 3.403  | -0.114 | 0.003 | 0.478   | в (   | 0.475 | 0.198  | 0.001 |
| mu   | 5.97   | 2.09  | 3.404  | 0.059  | 9.009 | 0.754   | 4 6   | 0.755 | 0.149  | 0.000 |
| cel  | 5.85   | 2.35  | 3,400  | -0.348 | 0.253 | 0.0159  | 9 0   | .0146 | 0.090  | 0.011 |
| fcel | 4.92   | 1.84  | 2.790  | -4.349 | 0.153 | 0.0303  | 3 0   | .0105 | -1.023 | 0.004 |
| ра   | 6.91   | 2.05  | 3.050  | 3.037  | 0.168 | 0.63    | 1 (   | 0.980 | 0.439  | 0.007 |
| phl  | 6.15   | 2.02  | 3.269  | 2.856  | 0.017 | 0.0848  | 8 (   | 0.167 | -0.049 | 0.000 |
| annm | 5.34   | 1.73  | 2.753  | 3.666  | 0.036 | 0.072   | 1 (   | 0.142 | 1.362  | 0.005 |
| east | 6.55   | 2.16  | 3.250  | -1.867 | 0.117 | 0.109   | 9 0   | .0771 | -0.534 | 0.014 |
| q    | 5.97   | 2.09  | 3.404  | 0      | 0     | 1.00    | 9     | 1.00  | 0.636  | 0.015 |
| H20  | 5.97   | 2.09  | 3.404  | 0      | 0     | 1.00    | 9     | 1.00  | -0.053 | 0.000 |
|      | Τ¡C    | 450   | 475    | 500    | 525   | 550     | 575   | 600   | 625    | 650   |
|      | av P   | 3.55  | 4.23   | 4.85   | 5.43  | 5.97    | 6.47  | 6.93  | 7.35   | 7.73  |
|      | sd     | 2.885 | 2.684  | 2.479  | 2.277 | 2.085   | 1.910 | 1.761 | 1.645  | 1.570 |
|      | sigfit | 5.016 | 4.576  | 4.157  | 3.764 | 3.404   | 3.085 | 2.817 | 2.612  | 2.483 |

#### Interpreting and refining results

- Poor result? Consider excluding end members
- Look for large misfit e\* >2.5
- Relatively large 'hat' value = influential end member. Maybe good, but bad if e\* also large
- Look at effect on P, sd and sigfit of relaxing activity constraint: big shift to smaller sd and fit marks candidate for deletion
- Stop deleting when sigfit reaches acceptable value

Rather large s.d. V. poor fit – should be <1.5

T

# Average P-T examples (3)

Plotting and interpreting results for a subsolidus Alpine kyanite schist ...

% DW-034 Polinik Schist (calc at 620°C, 7 kbar)
% Garnet rim
py 0.0074 gr 0.000008 alm 0.50
% Mean biotite
phl 0.047 ann 0.055 east 0.042
% Mean muscovite
mu 0.70 pa 0.470
% Mean staurolite
mst 0.00092 fst 0.47
% Mean plagioclase
an 0.158 ab 0.90
ky q H2O





However, the results do not lie in the kyanite field, and the  $H_2O$ -saturated result lies above the wet solidus. Consistency with calculated phase diagram is not guaranteed!

# Average P-T examples (4)

• Average P-T example, Mt Everest region, Himalaya

Two groups of samples with different assemblages:

- 1–5, muscovite-bearing upper amphibolite facies rocks
- 6–10, migmatitic Sil-Kfs zone gneisses, lacking muscovite



- Average *P*, with independent *T* calculation
  - Western Gneiss Complex, Norway; *P-T* array from local equilibrium in Cpx-PI-Hbl symplectite after omphacite



PHASE EQUILIBRIUM MODELLING: APPROACHES AND PITFALLS

## Mode 3: Calculate all reactions

- More useful than it might seem! Use pure end members, or with adjusted activities (based on a given sample)
- With Schreinemakers analysis: for P-T projections (petrogenetic grids), see <u>https://hpxeosandthermocalc.org/the-</u> thermocalc-software/thermocalc-calculationfacilities/thermocalc/extracting-dataset-information/
- Without Schreinemakers analysis: see all equilibria, with slopes and uncertainties. Useful for ...
  - Checking sensitivity of individual equilibria
    - Implications for which end members to retain or exclude in average P-T

#### Discovering new geobarometers! (small sd(P), small dP/dT)

- Garnet clinopyroxene phengite, for eclogites (Waters) & Martin, 1993)
- Amphibole equilibria, e.g., in high-variance assemblages, symplectites (Waters, 2003)

Partial results for an assemblage Hbl-Di-Pl-Qz

```
Reaction list (first 5 reactions):
```

```
jd + q = abh
   tsm + 2di + 2q = tr + 2anC
   7tsm + 2cumm + 14hed + 14q = 7tr + 2grnm + 14anC
3)
   2prgm + 6abh = tr + tsm + 8jd
4)
  2prgm + 3glm + 6anC = tr + 4tsm + 8jd
5)
```

#### Reaction thermo data:

|   | а        | sd(a) | b         | C         | ln_K    | <pre>sd(ln_K)</pre> |
|---|----------|-------|-----------|-----------|---------|---------------------|
| 1 | 12.959   | 0.23  | -0.045632 | 1.70566   | 1.196   | 0.187               |
| 2 | 14.552   | 0.54  | -0.061624 | 2.62940   | 4.542   | 1.082               |
| 3 | -39.902  | 9.31  | -0.354815 | 19.21593  | 45.887  | 25.759              |
| 4 | -173.201 | 1.99  | 0.453135  | -12.18784 | -15.980 | 1.896               |
| 5 | -108.095 | 2.92  | 0.343997  | -9.13372  | -12.577 | 4.629               |

#### P(kbar) at T:

|   | 550.00 | 600.00  | 650.00  | 700.00  | 750.00  | sdT | sdP   |
|---|--------|---------|---------|---------|---------|-----|-------|
| 1 | 9.6247 | 10.6734 | 11.7197 | 12.7629 | 13.8026 | 41  | 0.85  |
| 2 | 2.0463 | 2.4314  | 2.7919  | 3.1350  | 3.4780  | 472 | 3.24  |
| 3 | 1.0366 | 0.9064  | 0.7410  | 0.5695  | 0.3926  | +   | 10.41 |
| 4 | 7.4558 | 8.7539  | 10.0566 | 11.3637 | 12.6747 | 46  | 1.19  |
| 5 | 9.7943 | 11.0650 | 12.3640 | 13.6926 | 15.0522 | 149 | 3.90  |



### **THERMOCALC summary 1: strong and weak points**

#### Strengths:

- Line-oriented, precise location of univariant curves and assemblage boundaries
- Learning opportunities about phase diagram properties from hands-on construction
- Forward and inverse modelling from the same package
- Assured consistency (we hope also accuracy!) from use of internally consistent datasets and HPx-eos solution models
- Disadvantages:
  - More labour-intensive, steep learning curve, large time commitment for a complete diagram
  - User must decide which mineral phases to include significant opportunity for error
  - *G*-minimization possible, but limited in scope, inefficient
  - Tied to specific database and solution models (Holland & Powell dataset(s), and HPx-eos)
  - Solution models are still 'works in progress' with known flaws (applies to all software that uses them)
  - Some practitioners take issue with the way certain solution models are formulated
  - Program crashes may occur, error messages could be more helpful, 1 or 2 elusive bugs.



### **THERMOCALC summary 2: practical phase diagram strategies**

- *G*-minimization: reconnaissance before starting
  - Using *dogmin* function in THERMOCALC?
  - Is quickest with another package (T/D, Perple\_X)
- Complete diagram in THERMOCALC,
  - For graphical precision of results
  - Variety of output information
  - For better understanding of phase relationships
- You then have an equilibrium phase diagram, which can be used for further (perhaps non-equilibrium) petrological interpretation ...





### **Key references**

Holland, TJB, & Powell, R, 1998. An internally-consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology 16, 309-344.

- Pearce, MA, White, AJR, & Gazley, MF, 2015. TCInvestigator: Automated calculation of mineral mode and composition contours for THERMOCALC pseudosections. Journal of Metamorphic Geology, doi:10.1111/jmg.12126.
- Powell, R, & Holland, TJB, 1988 An internally consistent thermodynamic dataset with uncertainties and correlations: 3: application methods, worked examples and a computer program. Journal of Metamorphic Geology 6, 173-204.

Powell, R, & Holland, TJB, 1994. Optimal geothermometry and geobarometry. American Mineralogist 79, 120-133.

Powell, R, & Holland, TJB, 2008. On thermobarometry. Journal of Metamorphic Geology, 26, 155-179.

Powell, R, Holland, TJB, & Worley, B, 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology 16, 577-588.



**APPROACHES AND PITFALLS**