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As a beginner/novice in petrological modeling
I should definitively be aware of this!

Objectives of this lecture

o Help understanding each part of a thermodynamic database

o Obtain a detailed view of the current offer in thermodynamic databases 
and modeling programs

o Understand some of the challenges of internal consistency and uncertainty 
evaluation

o Target future needs and research directions
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A scientific model is an imperfect or idealized representation of a physical system

REAL WORLD
natural process(es)

MODEL
specific process(es)

DATA PREDICTIONS

Observation,
experiment

Theory, assumptions, 
calculations

Agree/Disagree

Models must have a robust physical basis and be coupled with experiment/observation

Feeding
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Modeling strategies based on equilibrium thermodynamics commonly 
used in metamorphic petrology

e.g. mineral assemblage diagrams 
(phase diagrams, pseudosections)

e.g. multi-equilibrium 
thermobarometry
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∆!𝐺",$ is the apparent Gibbs energy of a mineral phase; ∆%𝐺",$ is the 
standard Gibbs energy of formation of a phase from its constituent 
elements in their standard states; 𝑅 the universal gas constant; 𝑎 the 
activity of a phase in a solution. 

∆%𝐻"! ,$! and 𝑆"! ,$! are the enthalpy of formation from the elements or oxides and standard entropy at 𝑃& (1 bar) 
and 𝑇& (298.15 K); 𝐶𝑝 is the heat capacity and 𝑉 the molar volume of the phase 

Apparent Gibbs energy of a phase

o Standard Gibbs energy of formation of a phase (composition-independent term)

o Activity of a phase (composition-dependent term)

Equilibrium condition: Minimization of one of the several energies in the system

At fixed pressure (P) and temperature (T), the Gibbs energy is minimized at equilibrium

𝑅𝑇ln 𝑝 For example, ideal activity with p the proportion of the phase in the solution 
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Composition-independent term

Composition-dependent 
term

A dataset of standard state properties Solution models (activity or a–X models)

o Enthalpy of formation, standard entropy 
and volume

o Heat capacity and volume functions

o Calculate the composition dependent term 
depending on the composition of the solution 

o Includes ideal and non-ideal contributions

Any thermodynamic database of petrological interest must include:

Lanari & Duesterhoeft (2019), JPET
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Internally consistent dataset

Holland & Powell (2011), JMG



Introduction

Internally consistent dataset

o List of published datasets
o Fitting procedure pros and 

cons
o Challenges

Activity models

Thermodynamic databases

What’s next?

PHASE EQUILIBRIUM
MODELING

Part 1  

AN INTRODUCTION TO
PETROLOGICAL MODELLING



Introduction

Internally consistent dataset

o List of published datasets
o Fitting procedure pros and 

cons
o Challenges

Activity models

Thermodynamic databases

What’s next?

PHASE EQUILIBRIUM
MODELING

Part 1  

AN INTRODUCTION TO
PETROLOGICAL MODELLING

Lanari & Duesterhoeft (2019), JPET

+ compatible solution models & updates

+ compatible solution models & updates

+ compatible solution models & updates
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Experimental data and optimization of standard state properties: constraints

Thermochemical, thermophysical, and volumetric 
properties of phase (e.g. calorimetric measurements for 
Cp and S; X-ray diffraction for V)

o Direct measurement of phase property o Indirect experiment of reaction property 
data based on reaction reversal 
(bracketing) experiment

o Approximation based on fundamental 
relations ”enthalpy and entropy of 
reactions”

e.g. reaction Qz = Coe

∆%𝐻"! ,$! of Qz = ∆𝐻% SiO'
∆%𝐻"! ,$! of And = ∆𝐻% SiO' + ∆𝐻% Al'O(

Requires data for each polyhedral type; tabulated for 
enthalpy (large uncertainties): Chermak & Rimstidt
(1989) for entropy: Holland (1989)

Additional reactions: 

e.g. reaction Ab = Jd + Qz

Bohlen & Boettcher (1982)
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Experimental data and optimization of standard state properties: uncertainties

o Direct measurement of phase property o Indirect experiment of reaction property 
data based on reaction reversal 
(bracketing) experiment

o Approximation based on fundamental 
relations ”enthalpy and entropy of 
reactions”
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MAP
Mathematical programming
Each half-bracket is treated as a 
statement of inequality in ∆!𝐺",$

Range of solution with MAP, which 
ensures the consistency with all 
selected data

No uncertainties

Berman et al. (1986)

Easy to calculate, but requires some 
preparation and checking 

REG
Least square regression

The weighted mid-points of brackets 
are treated as positions where 
∆!𝐺",$ = 0
Minimize square of residuals: unique 
solution and it does not ensure 
consistency

Pseudo-uncertainties extracted from 
the variance-covariance matrix

Holland & Powell (1985)

Easy to calculate

BAYES
Bayes method

Each half-bracket is treated as a 
statement of inequality in ∆!𝐺",$

Approximate the mean of the 
posterior distribution and the 
uncertainty region

Uncertainties extracted from the 
variance-covariance matrix

Chatterjee et al., (1998)

Complex to calculate, requires extensive 
Monte-Carlo mapping
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Lanari et al. (2014), CMP

𝜎∆"'

o If any other thermodynamic property 
or function holds a large uncertainty or 
its value incorrectly determined, it will 
add to the total uncertainty of ∆%𝐻"!,$!
(e.g. 𝑆"!,$!)

o No inequalities, the ∆(𝐺",$ is used 
instead

o There are cases for which these errors 
remain undetected!

Example: only ∆%𝐻"!,$! values are adjusted during the global optimization in REG.
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Activity models

Orville (1972), AJS
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Activity models

𝐺)*+, = 𝑋-∆%𝐺-
",$ + 𝑋.∆%𝐺.

",$
o Mechanical mixture

o Reaction at given P and T without heat effect 
(∆𝐻% = 0) to form a single phase (ideal):

𝐺+/0% = −𝑇Δ𝑆1/2
In the case of ideal mixing volume and enthalpies are the sum of 
the components (Δ𝐻)*+!, -).)/0 = Δ𝑉)*+!, -).)/0 = 0); entropy of 
the new solution increases with a larger number of possible 
arrangements. 

o Excess energy (non-ideal) e.g. using regular and asymmetrical sub-regular models with three 
independent interaction energy parameters (Margules parameters):  

𝑊3 = W4 − 𝑇W5 + 𝑃𝑊6

𝐺7897:: = 8
;<-

=>-

8
?@-

=

𝜙;𝜙?
2∑A<-= 𝛼-𝑝-
𝛼; + 𝛼?

𝑊;,?

Example: asymmetric multicomponent formulation Holland & Powell (2003)  

End-members Margules (W)

Simple SS model 5 10 (x3)

Clinoamphibole
(Green et al. 2016)

10 45 (x3)
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Derivation of solution models for a given dataset (second step after the dataset)

In practice several parameters are not optimized using an algorithm, but are either parametrized 
(e.g. Powell et al. 2014) or manually adjusted by trial and error and based on guestimates. 

Example: dataset ds6.2 (Holland & Powell 2011)

o Solution models for metapelites White et al. (2014a,b) JMG
o Solution models for mafic systems: Green et al. (2016), JMG
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Pseudo-DQF type 1Regular and subregular models

Pseudo-DQF type 2Darken’s quadratic formulation

Lanari & Duesterhoeft (2019), JPET
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Thermodynamic databases

Yakymchuk (2017), Geosc. Can.
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Example: dataset HP98 (Holland & Powell 1998) + solution models:

** some of the standard state properties were adjusted

Solution model Reference

Chlorite Holland et al. (1998)

Orthopyroxene Powell & Holland (1999); White et al. (2002)

Chloritoid White et al. (2000)

Melt White et al. (2001; 2007)**

White mica Coggon & Holland (2002)**

Feldspar Holland & Powell (2003); Baldwin et al. (2005)

Clinopyroxene Green, Holland & Powell (2007); Diener & Powell (2012)

Garnet, Ilmenite, Biotite, Spinel White et al. (2007)**

Amphibole Dale et al. (2003; 2005); Diener, Powell & White (2007); 
Diener & Powell (2012)

Non-official solution models: 

Solution model Reference

Biotite Tajcmanova et al. (2009)

White mica Auzanneau et al. (2010)

Antigorite Padron-Navarta et al. (2013)

Chlorite Lanari et al. (2014)

Internal consistency (as defined here) is usually not rigorously tested



Introduction

Internally consistent dataset

Activity models

Thermodynamic databases

o Compatibility vs internal 
consistency

o Need to check the databases 
again experimental data

o Reliability of key 
thermodynamic parameters

What’s next?

PHASE EQUILIBRIUM
MODELING

Part 1  

AN INTRODUCTION TO
PETROLOGICAL MODELLING

Example: dataset ds6.2 (Holland & Powell 2011)
o Solution models for metapelites White et al. (2014) JMG

biotite

𝐺/BC =
1
3𝐺!00 +

2
3𝐺D,2 − 2 kJ

Reaction 1 obi = 1/3 ann + 2/3 phl + excess 
enthalpy term (∆𝐻) 

𝐺EBC = 𝐺*!1F +
1
2𝐺!0G −

1
2𝐺H(1 − 3 kJ

*

*
*

* phase not present in the internally-consistent dataset

𝐺FBC = 𝐺D,2 +𝐺(I −𝐺B( + 55 kJ

Pseudo-DQF type 1

Calculation of the apparent Gibbs energy for non-dataset endmembers: 
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Example: dataset ds6.2 (Holland & Powell 2011)
o Solution models for metapelites White et al. (2014) JMG

biotite

White et al. (2014), JMG

How does that affect 
internal consistency?

*

*
*

* phase not present in the internally-consistent dataset

Pseudo-DQF type 2
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Database check (HP11 + W14) against primary data using THERION (from C. de Capitani)

Bulk(2)= SI(294)AL(196)FE(264.6)MG(29.4)O(1176) SI(6)AL(2)FE(3)MG(3)K(2)O(24)H(4)
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This figure was generated using THERION; experimental data are from Ferry & Spear (1978), CMP



Introduction

Internally consistent dataset

Activity models

Thermodynamic databases

o Compatibility vs internal 
consistency

o Need to check the databases 
again experimental data

o Reliability of key 
thermodynamic parameters

What’s next?

PHASE EQUILIBRIUM
MODELING

Part 1  

AN INTRODUCTION TO
PETROLOGICAL MODELLING

Gervais & Trapy (2021), CMP

ds6.2
ds5.5

ds5.5+TCC

ds5.5 (perple_X)

e.g. experimental data from Patiño-Douce and Johnston (1991)

Test of several databases against experimental data by Gervais & Trapy (2021)

Mineral compositions
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For phase equilibrium modeling we need to calculate the apparent Gibbs energy of formation.

How reliable are other thermodynamic properties and functions?

Lanari & Duesterhoeft (2019), JPET

∆%𝐺",$ = ∆%𝐻"!,$! − 𝑇𝑆"!,$! +-
$!

$
𝐶𝑝d𝑇 − 𝑇-

$!

$ 𝐶𝑝
𝑇
d𝑇 + -

"!

"
𝑉d𝑃

𝜎∆"'

Berman

Holland & Powell

o Volume
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Berman

Holland & Powell

This figure was generated by Rob Berman using THERION from C. de Capitani

o Entropy
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Perspectives
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New constraints calculated from first principles (ab initio modeling)

B87: ∆%𝐻&'(.*+ = −2174.41 kJ/mol   .

Benisek & Dachs (2018)
Challenge: this approximation is not valid for complex minerals 

Standard state properties
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New constraints calculated from first principles (ab initio modeling)

Standard state properties Excess functions

Dubacq et al. (2011) AM

Example of structure of a 
supercell (for Ms30) at 
the end of the Monte 
Carlo Simulation

B87: ∆%𝐻&'(.*+ = −2174.41 kJ/mol   .

Benisek & Dachs (2018)
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We might need to derive a new generation of databases

o Derive standard state properties and activity models 
together to ensure internal consistency

o Use BAYES to derive robust values and uncertainties
o Provide an open-source tool that can be used when 

new data become available

We definitively need to test more the existing databases

o Develop a database of experimental data with 
uncertainties

o Provide an open-source tool to easily test any database 
against experimental data

o Encourage users to perform more tests

A fantastic job was done but we need more primary data

o Ab initio modeling
o More experimental work
o Acknowledge experimental work

Educate users

Community-approved 
working group?

Change citation policy

Optimization and 
minimization routines

Encourage experiments
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If (and only if) a database satisfies the primary constraints, we can think of

► using thermodynamic models for thermobarometry

*** THERMOCALC (Waters)  ***

*** Perple_X (Caddick)  ***

*** Theriak-Domino (Tinkham)  ***

► applying the models to more complex situations

*** Best practices in phase equilibrium modeling (Waters)  ***

*** Reactive bulk composition: Bingo-Antidote (Lanari)  ***

► while asking ourself some important questions

*** Influence of kinetics (Pattison)  ***

*** How good are the models at reproducing natural patterns? (Forshaw)  ***
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